JUL 28, 2020 12:06 PM PDT

How B Cells Find Their Way to Lymph Nodes

WRITTEN BY: Carmen Leitch

In order to generate immunity against invaders, some immune cells have to get to the lymph nodes. So how do they know how to get there? Researchers have now learned more about how crucial immune agents called B cells are able to navigate a dense network of tissues, vessels, and blood to reach the lymph nodes and help trigger an immune response. The findings, which have been reported in Nature Communications, have indicated that there is a trail of molecules that work to guide B cells through a treacherous path so that they can ultimately find their way to their destination.

 Lymphocyte B cell / Credit: BruceBlaus. Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine

"Our study suggests that B-cells sniff out a chemical trail which allows them to swim over relatively long distances in a highly complex microenvironment to reach their key destination," said the co-lead author of the study, Professor Mark Leake, from the Physics of Life group in the Department of Physics at the University of York.

The lymph nodes can act as a kind of filtration system, which traps microbial pathogens like viruses before they can reach other, sensitive areas of the body. B cells are critical to the immune system, and as they mature they have to move through the body from the bone marrow and eventually to the lymph nodes. Some B cells that reside in the lymph nodes acquire molecules from the surface of pathogens, and they present these so-called antigens to T cells. The T cells will then be activated if they have a receptor that recognizes the antigen. B cells can also produce antibodies.

This work has shown that extremely small cells are able to travel over relatively vast distances to go where they're needed.

"Relying on a single chemical transmitter to act as a beacon across the whole of the lymph node wouldn't do the trick, since the signal becomes too dilute and swamped by noise," said Leake. "Instead, these multiple signals are like having a trail of breadcrumbs that the cells can follow."

In this study, the researchers tagged molecules with fluorescent markers so they could track the movements of the cells, and used computational models and machine learning to map the fine structure of lymph nodes.

"The only way we could gain this incredible new insight is by forming a large research team with a broad range of expertise crossing between multiple traditional science disciplines," said Leake. "Research into understanding the workings of the immune system at the scale of single molecules may help us to understand why things go wrong in the case of some diseases of the immune system. It may help pave the way to new drugs that help to improve the immune system's ability to combat emerging threats from harmful viruses and bacteria that the human population have not previously encountered."

Sources: AAAS/Eurekalert! via University of York, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 05, 2020
Coronavirus
Age-old Immune Components Affecting COVID-19 Severity
AUG 05, 2020
Age-old Immune Components Affecting COVID-19 Severity
One of the most unsettling aspects of the coronavirus pandemic is the wide range of severity those affected seem to expe ...
AUG 05, 2020
Neuroscience
Mitochondrial Enzyme Used to Measure Brain Power Supply
AUG 05, 2020
Mitochondrial Enzyme Used to Measure Brain Power Supply
A new study from University College London (UCL) confirms that the brain steadily uses 20% of the body’s metabolic ...
AUG 24, 2020
Cell & Molecular Biology
A Shield Surrounds the Flexible SARS-CoV-2 Spike Protein
AUG 24, 2020
A Shield Surrounds the Flexible SARS-CoV-2 Spike Protein
Researchers know that the viruses including SARS-CoV-2 have a Spike protein that allows them to bind to receptors on hos ...
SEP 06, 2020
Cell & Molecular Biology
The Beginnings of a Protein Are Captured in 3D
SEP 06, 2020
The Beginnings of a Protein Are Captured in 3D
There are many genes in the DNA that gives rise to an organism, and genes that code for protein are a critical part of t ...
SEP 14, 2020
Health & Medicine
Direct Amplification: Rapid, Extraction-Free RT-qPCR Results
SEP 14, 2020
Direct Amplification: Rapid, Extraction-Free RT-qPCR Results
As the SARS-CoV-2 pandemic continues to rage across the United States and around the globe, the demand for COVID-19 test ...
SEP 28, 2020
Cardiology
A Single-Cell Atlas Provides New Details on the Heart
SEP 28, 2020
A Single-Cell Atlas Provides New Details on the Heart
For the first time, researchers have gained unprecedented insight into the function of the healthy human heart by creati ...
Loading Comments...