AUG 11, 2020 9:31 AM PDT

New Microscopy Tools Reveal More About the Role of Actin

WRITTEN BY: Carmen Leitch

Cells rely on a network of tiny filaments to give them form and support their structure. One crucial filament is a protein called actin. Researchers have now devised a new way to monitor the movements of a type of actin as cells move. This cutting-edge imaging technique enabled the scientists to observe actin as it helps a critical organelle in the cell, the powerhouse called the mitochondrion, to divide. The findings have been reported in Nature Methods (the preprint is available here at bioRxiv).

A cancer cell labeled for actin (red) and mitochondria (cyan). The scientists designed novel probes that specifically monitor interactions between actin and mitochondria. / Credit: Salk Institute/Waitt Advanced Biophotonics Center

"Actin is the most abundant protein in the cell, so when you image it, it's all over the cell," said corresponding study author Uri Manor, director of the Salk Institute's Biophotonics Core facility. "Until now, it's been really hard to tell where individual actin molecules of interest are, because it's difficult to separate the relevant signal from all the background."

Mitochondrial division, also called fission, occurs during normal maintenance in the cell; they don't only divide along with a dividing cell, they also undergo fission when cells are stressed or mitochondria have sustained damage. While research has suggested that actin is involved in mitochondrial fission, it's been difficult to elucidate its exact role.

 

In this work, researchers set out to observe actin, rather than trying to remove it from a cell to study its importance - actin is important so that when that happens, the cell is usually ruined. Instead, an actin probe was engineered so that when it's sitting within ten nanometers of mitochondria, a sensor causes it to emit a stronger fluorescent signal.

This study showed that there were bright spots of actin interacting with the mitochondrial membranes. This was also happening where another cellular organelle, the endoplasmic reticulum, was also in contact with the mitochondria, potentially where they were undergoing fission.

Actin hotspots were lighting up and disappearing over time. The scientists showed that there was actin fluorescing within 97 percent of mitochondrial fission sites. They suggested that it was probably happening at 100 percent of fission sites, but the other three percent just weren't visible.

"This is the clearest evidence I've ever seen that actin is accumulating at fission sites," said study co-first author Cara Schiavon, a joint postdoctoral fellow in the labs of Uri Manor and Salk Professor Gerald Shadel. "It's much easier to see than when you use any other actin marker."

Further study suggested that actin links up with the mitochondria before it arrives at the endoplasmic reticulum. They may be coordinating fission together. Other experiments indicated that other organelles like endosomes and lysosomes also divide near endoplasmic reticulum-associated actin.

"This is a universal tool that can now be used for many different applications," said co-first study author Tong Zhang, a light microscopy specialist. "By switching out the targeting sequence or the nanobody, you can address other fundamental questions in cell biology."

Manor is featured in the podcast available above.

"We're in a golden age of microscopy, where new instruments with ever-higher resolution are always being invented; but in spite of that there are still major limitations to what you can see," added Manor. "I think combining these powerful microscopes with new methods that select for exactly what you want to see is the next generation of imaging."

Sources: AAAS/Eurekalert! via Salk Institute, Nature Methods

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 11, 2021
Neuroscience
Beige Fat Cells Protect the Brain from Dementia
AUG 11, 2021
Beige Fat Cells Protect the Brain from Dementia
‘Beige’ fat reduces inflammation in mouse brains, and may provide protection from dementia. The correspondin ...
AUG 19, 2021
Immunology
Immune Enzyme Kills Viruses but Makes Tumors Stronger
AUG 19, 2021
Immune Enzyme Kills Viruses but Makes Tumors Stronger
Robert Louis Stevenson’s 1886 novel Strange Case of Dr. Jekyll and Mr. Hyde describes a man who is a kind, respect ...
AUG 31, 2021
Cell & Molecular Biology
Researchers 3D Print Japanese-Style Beef Steaks
AUG 31, 2021
Researchers 3D Print Japanese-Style Beef Steaks
Agriculture, especially the production of meat, puts tremendous pressure on the environment and is thought to be a major ...
AUG 30, 2021
Health & Medicine
For the love of java: Researchers find association, not causation, between excessive coffee consumption, brain size, and dementia
AUG 30, 2021
For the love of java: Researchers find association, not causation, between excessive coffee consumption, brain size, and dementia
Researchers find association, not causation, between excessive coffee consumption, brain size, and dementia
SEP 07, 2021
Immunology
Designer Cells for Treating Arthritis Are Activated by Inflammation
SEP 07, 2021
Designer Cells for Treating Arthritis Are Activated by Inflammation
Scientists have developed a new cell therapy for arthritis that becomes activated in the presence of inflammation. When ...
SEP 19, 2021
Genetics & Genomics
A New Understanding of Japanese History Through Genetics
SEP 19, 2021
A New Understanding of Japanese History Through Genetics
Palaeoarchaeologists, human geographers, and other scientists have sought to understand the evolution of humans, their c ...
Loading Comments...