AUG 29, 2020 1:47 PM PDT

Together, Two Gut Microbes Have a Nasty Effect

WRITTEN BY: Carmen Leitch

The microbes in the human gut play important roles in our physiology, and they can also contribute to disease. But they do not exist on their own; they live together in a large community, and the relationships they have with one another may be just as important as their individual identities.

Multiple sclerosis (MS) is an autoimmune disease in which the insulating sheath surrounding neurons is destroyed, a process called demyelination. It can cause numbness, tremors, and weakness, and can disrupt the ability to walk. Reporting in Nature, researchers from the RIKEN Center for Integrative Medical Sciences (IMS) used a mouse model to show that a specific combination of gut microbes can worsen the symptoms of MS. Together, the microbes encourage the activity of immune cells that attack the brain and spinal cord.

It's known that gut microbes can change the symptoms of multiple sclerosis. In this study, the researchers began to learn more about how that happens.

A mouse model of MS experiences demyelination of the spinal cord as T cells that generate an inflammatory molecule called IL-17A attack the myelin. When these mice were given ampicillin, the demyelination was reduced, and the activation of this kind of T cell was halted.

"We found that treatment with ampicillin, and only ampicillin, selectively reduced activity of T cells that attack an important protein called myelin oligodendrocyte glycoprotein [MOG], which helps myelin stick to neurons," explained study author Hiroshi Ohno of RIKEN IMS.

The researchers harvested immune cells from the small intestines of the model, exposed them to MOG, and measured cytokine levels; they saw that it was only reduced by ampicillin if the T cells were from the small intestine. This suggested that microbes in the small intestine activate MOG-specific T cells that are then able to attack myelin.

They searched for the microbe that was responsible since ampicillin was reducing the symptoms. They found a candidate, OTU002, and tested it. They determined that when their mouse model totally lacked OTU002, they had symptoms that were worse than mice without gut microbes.

Image credit: Max Pixel

"But, there was a problem," said first author Eiji Miyauchi. "Symptoms in the OTU002-only mice were not as bad as those in the regular model mice. This means that the original effect must involve more than one microorganism."

They looked for a bacterium that could react to MOG-specific T cells, and found that Lactobacillus reuteri makes a protein with a region that is similar to one in MOG. Mice that carried both L. reuteri and OTU002 had more severe symptoms than those with only OTU002 mice and were just as bad as the original model mice. When the microbes combine, they unleash a terrible effect.

"Other studies have focused on fecal microbes, or a single microbe, in patients with multiple sclerosis or in model mice," said Miyauchi. "Our data emphasize the necessity of considering the synergistic effects of intestinal microbes on autoimmune diseases and give hope to people looking for effective treatments for multiple sclerosis. But, because gut microbes and T cell binding locations on myelin differ between mouse and human, further studies using human microbes and autoreactive T cells are now needed."

Sources: AAAS/Eurekalert! Via RIKEN, Nature

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 07, 2022
Cell & Molecular Biology
Vitamin K Revealed as Potent Cell Death Suppressor
AUG 07, 2022
Vitamin K Revealed as Potent Cell Death Suppressor
Researchers have known that vitamin K has antioxidant properties, but the mechanism behind that function remained obscur ...
AUG 08, 2022
Genetics & Genomics
This Weed is a Super Plant, Providing Insight Into Drought Tolerance
AUG 08, 2022
This Weed is a Super Plant, Providing Insight Into Drought Tolerance
You may have seen a 'super plant' growing in between the cracks of sidewalks. Portulaca oleracea is commonly known as pu ...
AUG 09, 2022
Immunology
New Small Molecule May Improve Immunotherapy for a Variety of Cancers
AUG 09, 2022
New Small Molecule May Improve Immunotherapy for a Variety of Cancers
Scientists have been trying to stimulate the immune system to fight cancer for decades, and recent years have brought ma ...
AUG 24, 2022
Immunology
Immune Cells Can Use 'Waste' as a Powerful Fuel
AUG 24, 2022
Immune Cells Can Use 'Waste' as a Powerful Fuel
T cells are on the front lines of the immune system, monitoring the body for pathogens, and springing into action when t ...
AUG 31, 2022
Immunology
Some Immune Cells Have a Taste for Sugar
AUG 31, 2022
Some Immune Cells Have a Taste for Sugar
T cells help us fight pathogens, and there are many kinds. New research has shown that a type of T cell that stays in th ...
SEP 07, 2022
Cell & Molecular Biology
Sequencing Living Cells, Individually, Without Killing Them
SEP 07, 2022
Sequencing Living Cells, Individually, Without Killing Them
When genes in a cell are active, they are transcribed into messenger RNA (mRNA) molecules. So researchers can take a sna ...
Loading Comments...