DEC 30, 2020 1:15 PM PST

Measuring Electrical Differences Inside of Live Cells

WRITTEN BY: Carmen Leitch

Electricity is a key aspect of life, and is required for organisms to move and communicate. The movement of tiny charged particles called ions across the membranes that enclose cells are what generates electrical currents. The voltage differences across a cell membrane can be measured with precise techniques, but scientists don’t know much about voltage differences that might exist within the cell itself, across the membranes of organelles.

Image credit: Pixy.org

Now researchers have found a way to measure such differences. This work, which was reported in Nature Nanotechnology, can help scientists learn more about how electrical charges may be affecting the function of some organelles, tiny structures inside of cells that have specific functions. 

“Scientists had noticed for a long time that charged dyes used for staining cells would get stuck in the mitochondria,” noted first study author and University of Chicago graduate student Anand Saminathan. “But little work has been done to investigate the membrane potential of other organelles in live cells.”

Saminathan works in the lab of Professor Yamuna Krishnan, where the team works to create minuscule sensors that can move into cells, note what’s happening, and report back to the scientists. This information can help researchers understand proper cell function and how it gets disrupted during a disease. While the Krishnan lab has already made sensors that can assess neurons and lysosomes, they became interested in investigating the electrical properties of the organelles within living cells.

Ions can move across cell membranes through ion channels. These channels are essential for the function of neurons; they enable a current to travel down a neuron as the channels open and close. Previous work has indicated that organelles also carry some of these channels in their membranes, but little is known about their purpose.

Scientists can now start to learn more about those channels with a new tool called Voltair, which can measure the voltage difference between two parts of the same cell. Voltaire was made using DNA molecules, so it’s able to easily get inside of cells and move to different places.

When the Krishnan lab tested Voltair, they found evidence that several organelles have a membrane potential, including the trans-Golgi network and recycling endosomes.

“So I think the membrane potential in organelles could play a larger role, maybe it helps organelles communicate,” said Krishnan.

“This new development will at least start conversations, and may even inspire a new field of research,” said Saminathan.

Sources: Phys.org via University of Chicago, Nature Nanotechnology
 

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 04, 2021
Cell & Molecular Biology
Protein Biophysics Revealed in Spiderweb/Dewdrop Interactions
FEB 04, 2021
Protein Biophysics Revealed in Spiderweb/Dewdrop Interactions
Just like oil and water are both liquids but they don't coalesce into one, it's thought that cells use phase separation ...
FEB 22, 2021
Microbiology
A Nasal Spray That Seems to Prevent the Spread of COVID-19
FEB 22, 2021
A Nasal Spray That Seems to Prevent the Spread of COVID-19
Reporting in Science, researchers have created an antiviral nasal spray that could help us get the COVID-19 pandemic und ...
FEB 27, 2021
Cell & Molecular Biology
It's Now Possible to Measure tRNA Levels in Cells
FEB 27, 2021
It's Now Possible to Measure tRNA Levels in Cells
There are different kinds of ribonucleic acids that play essential roles in many aspects of molecular biology, including ...
FEB 28, 2021
Genetics & Genomics
CRISPR Advances Make the Gene Editor Specific to Tissues & Times
FEB 28, 2021
CRISPR Advances Make the Gene Editor Specific to Tissues & Times
Research scientists have to be able to manipulate molecules in cells to learn more about their function, what goes wrong ...
MAR 19, 2021
Genetics & Genomics
The Giraffe Genome Explains Some of Its Unusual Characteristics
MAR 19, 2021
The Giraffe Genome Explains Some of Its Unusual Characteristics
Giraffes are unique and have made many evolutionary adaptations. They have a very short sleep cycle, for example.
MAR 21, 2021
Cell & Molecular Biology
A Model of Early Human Development is Created
MAR 21, 2021
A Model of Early Human Development is Created
Scientists now have a new way to investigate the processes underlying human development, diseases that may arise during ...
Loading Comments...