FEB 12, 2016 7:39 AM PST

Synthetic Biology: DNA Nanocages Enhance Enzymatic Reactions

WRITTEN BY: Cassidy Reich
The cell is intelligently designed. Various membrane-bound organelles (mitochondria, lysosomes, etc) create their own perfect environment to run their enzymatic reactions. However, synthetic biologists have now been able to build their own compartments that can run enzymatic reactions even more efficiently than in the cell. A group led by Hao Yan out of Arizona State University has built DNA nanocages that house, and enhance, enzymatic reactions.

Other groups in the past have tried similar constructs using viral protein particles, but that is less desirable than using DNA for several reasons. First of all, the protein cages were not able to encompass large enzymes because of steric hindrance. Steric hindrance is a fancy way of saying that the amino acid side chains from the protein box got in the way of the side chains from the enzyme. Secondly, DNA is a better building material due to its “programmable, sequence-driven self-assembly.” The complementary base pairing that is intrinsic to DNA allows it to self-assemble into 3D structures. In nature, that means the double helix that we all know and love, but scientists can manipulate those properties to make DNA create a 54 nanometer box.
 


To run the enzymatic reactions, the boxes are first assembled as two half-boxes, with one half being loaded with the enzyme and the other half with the substrate. The two halves then associate, bringing the enzyme and substrate together (video). The DNA nanocages also have small pores that allow cofactors for enzymatic reactions to diffuse through, such hydrogen ions. Large molecules cannot diffuse through the box, and the enzyme and substrate within are protected from degradation.
 
Transmission electron microscopy images of the DNA nanocages.


Overall, the nanocages increased enzymatic activity between 4-10 fold and increased the turnover rate (number of substrate molecules converted per second).You might think that the enhanced enzymatic activity is simply because the DNA nanocages are bringing the enzyme and substrate close together, but that is actually not the case. The majority of the effect the nanocages have on enzyme activity has to do with the charge distribution of the DNA. DNA carries a negative charge due to the phosphate groups, and in the highly structured nanocages, those negative charges hydrogen bond with water to created more stabilized layers of water within the cages. It is thought that the more structured water helps to stabilize the enzymes in their active conformations.

If you’re like me, you might read all this and think, “Super cool, but why?” This kind of synthetic biology actually has a lot of translational appeal. DNA nanocages could be used to create more precise enzymatic environments in smart materials, to make a very precise and targeted drug delivery system, to make industrial reactions more efficient, and to improve medical diagnostics. Additionally, the researchers point out that their findings can be used to increase understanding of cellular organization and why certain reactions are run in particular environments. Really, creativity is the limit for these kinds of advancements.

Sources: EurekAlert and Nature Communications
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
MAR 23, 2020
Cell & Molecular Biology
MAR 23, 2020
How a Father's Diet Can Impact the Health of His Offspring
When fathers consume a diet high in fat or low in protein it can increase the risk of metabolic disorders like diabetes ...
APR 21, 2020
Neuroscience
APR 21, 2020
Considerations for Lab Managers in Choosing a Microplate Reader
In today's high-tech, digitized laboratory environments, nobody pays very much attention to the humble plastic micro ...
MAY 03, 2020
Cell & Molecular Biology
MAY 03, 2020
How One Protein is Linked to Three Different Brain Disorders
The accumulation of aberrant, misfolded proteins is a known feature of several different kinds of brain diseases.
MAY 10, 2020
Cell & Molecular Biology
MAY 10, 2020
RNA Structure Informs RNA Function
Proteins carry out many of an organism's critical functions, and they are coded for by genes. To make a protein from ...
MAY 11, 2020
Cell & Molecular Biology
MAY 11, 2020
3D Cell Culture Model Suggests Herpes Can Cause Alzheimer's
Alzheimer's is a common form of dementia that affects as many as 5.5 million Americans and the incidence is increasing a ...
MAY 20, 2020
Clinical & Molecular DX
MAY 20, 2020
QMS Competencies Your Reagent Supplier Should Possess
The ability of a clinical laboratory to provide consistent and reliable results to their customers depends on the consis ...
Loading Comments...