JAN 29, 2015 12:00 AM PST

Targeting A Killer Protein

Scientists at the A*STAR Institute of Molecular and Cellular Biology have found that a normal cell process is disrupted by the over expression of a specific protein, and that disruption causes cancer cells to grow aggressively. The role of this phosphatase protein in promoting the self-destruction of healthy cells and the progression of ovarian cancer has been further revealed in a series of experiments by researchers at A*STAR. The protein, called PTP4A3, is known to be overexpressed in cancer cells and researchers are hopeful that it could be useful as a biomarker for disease prognosis.

In any form of cancer, the process of unhealthy tumor cells growing and spreading is caused in part by the exploitation of some of the body's natural cellular processes. One example of such a process is the self-destruction and recycling of older or damaged cells in the body. This process is known as autophagy and is normal and necessary for keeping healthy cells alive in the body.

Autophagy is carried out by organelles known as autophagosomes, whose job is to take apart cells and transport the unwanted cellular material to be recycled into new membranes and proteins. This constant dismantling and recycling is what keeps cells healthy.
Autophagosomes go through a maturation process during autophagy, which allows them to carry out their role effectively.

Through performing a series of experiments investigating the role of PTP4A3 in cancer progression, Qi Zeng and co-workers at the A*STAR Institute of Molecular and Cell Biology in Singapore, together with other scientists in Singapore and the UK, have uncovered links between the overexpression of PTP4A3 and the acceleration of autophagosome maturation that occurs during autophagy. Apparently, speeding up the maturation process of the autophagosomes can lead to the rapid spread of ovarian cancer cells.

"Our experiments on the expression of PTP4A3 in ovarian cancer cells led us to discover that the protein exploits the autophagy pathway in order to promote cancer cell growth," says Zeng.

The researchers found that PTP4A3 accumulates in autophagosomes, accelerating the maturation process. This in turn encourages the destruction of healthy cells and allows the cancer to take hold. When autophagosomes mature at an accelerated rate, they demolish healthy cells, in addition to the older and damaged cells that are their intended targets. Unexpectedly, Zeng and her team also discovered that PTP4A3 itself then submits to autophagy at a later stage. After the cancer has progressed dangerously, the same process that caused it to flourish then begins to destroy the cells containing PTP4A3.

Following analysis of a large set of data taken from ovarian cancer patients, the team found that high levels of PTP4A3 together with autophagy genes were significantly correlated with poor prognosis in human ovarian cancer patients. "This means that PTP4A3 levels could potentially act as a useful biomarker for prognosis in the future," explains Zeng.

In addition, the researchers found that the inhibition of autophagy reduced the incidence of ovarian cancer cells driven by the PTP4A3 protein their experiments.

"This study suggests that autophagy could be used as a potential target for arresting PTP4A3-driven tumor progression in patients with high expression of both PTP4A3 and autophagy genes," says Zeng.
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
DEC 27, 2020
Immunology
Thymus Transplantation?! It Could be Possible!
DEC 27, 2020
Thymus Transplantation?! It Could be Possible!
The thymus is an essential organ of the lymphatic system; it is responsible for developing mature T cells. T c ...
DEC 24, 2020
Genetics & Genomics
After Chromosomes Shatter, Cancer Cells Can Become Drug-Resistant
DEC 24, 2020
After Chromosomes Shatter, Cancer Cells Can Become Drug-Resistant
Many types of cells have to be replenished throughout our lives, and cells divide to replace those that are damaged or w ...
JAN 06, 2021
Genetics & Genomics
Junk DNA Helps Control the Body Clock
JAN 06, 2021
Junk DNA Helps Control the Body Clock
Our bodies run on a kind of molecular clock, which helps regulate and time certain functions beyond just waking and slee ...
JAN 15, 2021
Microbiology
Enterovirus Images May Pave the Way to Edible Vaccines
JAN 15, 2021
Enterovirus Images May Pave the Way to Edible Vaccines
Most adenoviruses infect the respiratory system. But there are variants of these viruses that infect the gastrointestina ...
JAN 26, 2021
Cell & Molecular Biology
Diagnostic Tool Could ID 20% of Autism Cases
JAN 26, 2021
Diagnostic Tool Could ID 20% of Autism Cases
Scientists may have created a diagnostic test that can identify as many as one-fifth of potential autism spectrum disord ...
FEB 09, 2021
Cell & Molecular Biology
Brain Cells Called Astrocytes Linked to Depression
FEB 09, 2021
Brain Cells Called Astrocytes Linked to Depression
Depression is thought to affect at least 264 million people of all ages worldwide, and the available treatment options d ...
Loading Comments...