FEB 24, 2015 3:41 PM PST

Interaction in Motor Proteins Found to be Significant

Scientists at Rice University have published new information about how motor proteins interact. Their study shows that when motor proteins travel together, they tend to move at a slow and steady pace for optimal transport. In the past these interactions were not considered significant however theoretical biophysicist Anatoly Kolomeisky, the lead author of the study, says that cell dynamics are affected by even small changes, such as medication and the way proteins interact is worthy of study. His group's paper in the Journal of Physics A: Mathematical and Theoretical describes a new theoretical approach to study the effect of intermolecular interactions on the dynamics of motor proteins
Motor proteins make their way along a microtubule
The team built a new mathematical model that analyzes motor protein activity and demonstrates that both strong and weak interactions are important to regulate the flux, or movement, of motor proteins.

"It's known that these motor proteins work together, and that when two motors are next to each other, they interact," Kolomeisky said. "It's relatively weak, but it is an interaction. The question we raised is, ‘What is the role of these interactions in overall cooperation?' What we've done that other groups have not is treat these interactions in a thermodynamically consistent way," he said. "

Using a model known as totally asymmetric simple exclusion process, they created a simulation of protein transport where they could vary the amount of interaction between motors. Kolomeisky said. "Surprisingly, we found in our simulations that having no interaction between the motors is not optimal." When the team manipulated the simulation in different ways to account for the thermal dynamics of attraction and repulsion they found that the motors could adjust for fluctuations in their environment. Gathering together would slow down movement, while separating and keeping more space between motors would speed up the transport along the simulated microtubules.

Over time both strong attractions and repulsions became diminished, as if wearing out. This lessening of the dynamic impacted particle flow leading researchers to surmise that a "just right" amount of interaction; an intermediate amount of attraction or repulsion was better than an extreme amount. Surprisingly their model showed that weaker repulsions lead to maximum movement. It seems that motor proteins are somewhat hobbled by strong attractions. When there was a large amount of attraction between proteins, clusters formed and would often stop the motors completely because individual particles became trapped.

The team built simulations of various sizes to insure their data was as close to reality as possible. "We realized that first, biological systems might not be optimized for maximal flux but for something else. Second, our theory shows the system is very sensitive to small changes. In other words, a motor can easily adjust itself. You change a little bit of the interaction, and the motors change flux significantly." Kolomeisky said the new work helps chip away at the mysteries that remain to be solved in cellular dynamics. "The more we understand about fundamental features of these biological phenomena, the better for us," he said. "This is one small part of a huge puzzle."
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
OCT 08, 2020
Immunology
Immuno Metabolic Complexity and Modulating Metabolites
OCT 08, 2020
Immuno Metabolic Complexity and Modulating Metabolites
Immunometabolism is a relatively new subspecialty of immunology as we’ve begun to unravel the complex metabolic re ...
OCT 12, 2020
Cell & Molecular Biology
The Human Arm Appears to be Evolving Slightly
OCT 12, 2020
The Human Arm Appears to be Evolving Slightly
There are no humans that can perform feats of super-strength or control objects with their mind, but people are apparent ...
OCT 17, 2020
Clinical & Molecular DX
Imaging Innovation Set to Ease the Pain of Osteoarthritis
OCT 17, 2020
Imaging Innovation Set to Ease the Pain of Osteoarthritis
In osteoarthritis, the joint cartilage that cushions bones begins to break down, causing debilitating pain and stiffness ...
OCT 13, 2020
Cell & Molecular Biology
A Small Part of the Brain May Transmit Inflammation From Mom to Fetus
OCT 13, 2020
A Small Part of the Brain May Transmit Inflammation From Mom to Fetus
There is still a lot we don't know about the brain, and especially about two small bits of tissue deep within it called ...
NOV 06, 2020
Cell & Molecular Biology
The Structure of Proton-Activated Chloride Channels Is Revealed
NOV 06, 2020
The Structure of Proton-Activated Chloride Channels Is Revealed
Scientists have generated structural images of a newly-described class of ion channels that help maintain the balance of ...
NOV 11, 2020
Cell & Molecular Biology
Visualizing a Tumor Suppressor in Action
NOV 11, 2020
Visualizing a Tumor Suppressor in Action
Many types of cells in our bodies are short-lived and need to be replenished. Cell division has to be carefully controll ...
Loading Comments...