JUL 11, 2016 11:28 AM PDT

Unusual Pupils Let Cephalopods see Color

WRITTEN BY: Carmen Leitch
It’s long been accepted that cephalopods – such as squids and octopuses – are unable to see color because their eyes contain only one kind of receptor.  New work however, shows that their pupils, which have a highly unusual shape, do in fact allow them to sense color and thus, mimic the features of their backgrounds.
According to a new theory, the pupil of the cuttlefish Sepia bandensis maximizes chromatic blur, allowing the animal to detect color. / Credit: Roy Caldwell, UC Berkeley
A study in the Proceedings of the National Academy of Sciences by UC Berkeley graduate student Alexander Stubbs in collaboration with his father, Harvard astrophysicist Christopher Stubbs, suggests cephalopods could be able to see color but in a different way from other animals. They developed a computer simulation that modeled how cephalopod eyes might use chromatic aberration to sense color.

Their secret is an unusual, U-shaped, W-shaped or dumbbell-shaped pupil that lets light enter the eye through the lens from a variety of directions, instead of straight into the retina.

The eyes of humans and other mammals have round pupils that can contract to pinholes, giving us clear, crisp vision, with all colors directed on the same place. But when pupils dilate, everything becomes blurry with colorful fringes around objects, a phenomenon known as chromatic aberration. That occurs because the lens of the eye behaves like a prism, splitting white light into component colors. As the area of the pupil through which light enters increases, the colors are further spread out. Thus, as the pupil (of a human) gets smaller, the chromatic aberration is reduced. Camera and telescope lenses also suffer from chromatic aberration, so photographers will reduce the amount of light entering (or stop down) their lenses to capture the sharpest image with the lowest amount of color blurring.
The unusual pupils of cephalopods (from top, a cuttlefish Sepia bandensis; squid Sepioteuthis; and Octopus vulgaris) allow light into the eye from many directions, which spreads out the colors and allows the creatures to determine color, even though they are technically colorblind. / Credit: Photos by Roy Caldwell, Klaus Stiefel, Alexander Stubbs, respectively
Cephalopods, however, have evolved large, wide pupils that actually accentuate the chromatic aberration, Stubbs explains, and could have the ability to sense color by bringing certain wavelengths into focus on the retina, in the way animals such as chameleons ascertain distance by using relative focus. Altering the depth of their eyeball, which changes the distance between the lens and the retina, focuses the wavelengths. The pupil moves around to change its location and reduce the amount of chromatic blur.
"We propose that these creatures might exploit a ubiquitous source of image degradation in animal eyes, turning a bug into a feature," Stubbs said. "While most organisms evolve ways to minimize this effect, the U-shaped pupils of octopus and their squid and cuttlefish relatives actually maximize this imperfection in their visual system while minimizing other sources of image error, blurring their view of the world but in a color-dependent way and opening the possibility for them to obtain color information."

"We believe we have found an elegant mechanism that could allow these cephalopods to determine the color of their surroundings, despite having a single visual pigment in their retina," Stubbs continued. "This is an entirely different scheme than the multi-color visual pigments that are common in humans and many other animals. We hope this study will spur additional behavioral experiments by the cephalopod community."

Sources: AAAS/Eurekalert!, PNAS
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 19, 2020
Cardiology
Examining a Possible Link Between Atherosclerosis and Inflammation
NOV 19, 2020
Examining a Possible Link Between Atherosclerosis and Inflammation
The immune system’s primary duty is to protect the body from dangerous invaders. Many don’t know that it als ...
DEC 07, 2020
Cell & Molecular Biology
Cellular Structure Discovered Inside Peroxisomes
DEC 07, 2020
Cellular Structure Discovered Inside Peroxisomes
Rice University researcher Zachary Wright has discovered a previously unknown compartment inside cellular organelles cal ...
DEC 17, 2020
Cardiology
A Heart Attack Induces Change in Cytokine Signaling in Patients
DEC 17, 2020
A Heart Attack Induces Change in Cytokine Signaling in Patients
Cellular signaling is critical for the body to coordinate everything from heart rate to not hitting yourself when you mo ...
DEC 23, 2020
Cell & Molecular Biology
Similarities Between Two Proteins May Impair One's Activity
DEC 23, 2020
Similarities Between Two Proteins May Impair One's Activity
Cytokines are a group of molecules that are involved in several processes including cell signaling and inflammation, the ...
JAN 12, 2021
Cell & Molecular Biology
Hyperactive Mitochondria Can Fuel Brain Tumors
JAN 12, 2021
Hyperactive Mitochondria Can Fuel Brain Tumors
The most common and deadly form of brain cancer is known as glioblastoma; the median survival time for patients is only ...
JAN 18, 2021
Cell & Molecular Biology
MicroRNAs May be Treatment Targets for Traumatic Brain Injury
JAN 18, 2021
MicroRNAs May be Treatment Targets for Traumatic Brain Injury
Traumatic brain injury, which can happen after a blow to the head, has been called a silent epidemic and is the number o ...
Loading Comments...