JUL 18, 2016 8:57 AM PDT

Scientists Learn How Mitochondrial DNA Replication is Controlled

WRITTEN BY: Carmen Leitch
Many human diseases have been linked to dysfunction in mitochondria, organelles in every cell that are responsible for generating energy, and which have their own set of DNA that they maintain themselves. It’s been unknown however, how the replication of that mitochondrial DNA (mtDNA) is controlled in mammalian cells. Publishing in Science, researchers have now made an important discovery in determining how cells control the replication of mtDNA and couple that process to mitochondrial division.
ER-mitochondria contacts coordinate mtDNA replication with mitochondrial division. In human cells, a subset of ER-mitochondria contacts are spatially linked to mitochondrial nucleoids engaged in replication and are destined for mitochondrial division./ Credit: Science, Lewis et al
It’s thought that mitochondria originated from a bacterium that took up residence inside of other cells, permanently, and have retained their own DNA from that very distant past. All eukaryotic cells use mitochondria to obtain energy from the metabolic process known as respiration.

"This has very profound implications for human disease," said Jodi Nunnari, Professor and Chair of Molecular and Cellular Biology at the University of California, Davis and the senior author of the paper. Division of DNA contained in the cell's nucleus is very tightly controlled, but synthesis and division of mtDNA is "a lot more relaxed," explained Nunnari.

The cell must somehow organize new copies of mtDNA. Mitochondria have the appearance of long, snaking tubes in human cells. From hundreds to thousands of copies of their single chromosome are packaged into a structure called the nucleoid.

Two of the investigators, postdoctoral researcher Samantha Lewis, together with undergraduate student Lauren Uchiyama, tagged mitochondria, their chromosomes, and the endoplasmic reticulum, a network of tubes that spreads throughout the cell, with fluorescent dyes so they could be observed under a microscope.
Replicating nucleoids mark sites of ER-mediated division. Representative time-lapse images of a U2OS cell expressing mito-BFP, mRuby-KDEL (ER), and POLG2-GFP, demonstrating mitochondrial division at a mitochondrial-ER contact site spatially linked to POLG2-labeled nucleoid (arrowheads indicate division site). / Credit: Science, Lewis et al
They observed that when mitochondrial chromosomes were dividing, they were located at points where the endoplasmic reticulum touches a mitochondrion. Those were the same points where mitochondria divided into two, a process whereby a protein encircles the organelle, then squeezes it until it splits.

"The endoplasmic reticulum comes into contact with the mitochondrion, and where they contact is where they divide," Nunnari said.

This contact between the organelles "licenses" the mtDNA to replicate and divide, Nunnari explained. The DNA division is physically coupled to division of the mitochondrion itself, as well as to the distribution of the new, daughter DNA around the cell.

"There are hundreds of contact points around the cell that determine where division takes place and how mitochondria are distributed, but division preferentially occurs at the subset of contacts where mitochondrial DNA is being copied" Nunnari continued. "It shows that there is a higher order to this, it is not simply random."

Nunnari commented that this work stemmed entirely from fundamental research, but the discovery has many implications for understanding cellular functions, aging and a broad range of diseases.
"We didn't come to this by studying any specific disease, it's discovery-based research, but this will greatly impact human health," Nunnari concluded.

Sources: Science, Science Daily via University of California, Davis
About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 26, 2022
Immunology
A Rheumatoid Arthritis-Promoting Molecule is Identified
SEP 26, 2022
A Rheumatoid Arthritis-Promoting Molecule is Identified
Researchers have found that a protein called sulfatase-2 may play a significant role in the tissue damage caused by rheu ...
SEP 29, 2022
Cell & Molecular Biology
What's In a Lysosome?
SEP 29, 2022
What's In a Lysosome?
The lysosome is a small membrane bound organelle that can be found in most animal cells. It was once thought that these ...
OCT 05, 2022
Cell & Molecular Biology
Researchers Discover Muscle Disease Starts Earlier Than Thought
OCT 05, 2022
Researchers Discover Muscle Disease Starts Earlier Than Thought
People with Duchenne muscular dystrophy (DMD) start to experience symptoms in early childhood. The disease is caused by ...
NOV 13, 2022
Cell & Molecular Biology
How Phase Separation is Involved in Cell Size Control
NOV 13, 2022
How Phase Separation is Involved in Cell Size Control
When certain things in the cellular environment change, such as a dramatic increase in salt or sugar levels, it can caus ...
NOV 23, 2022
Cell & Molecular Biology
The Living 'Crystals' Formed by Starfish Embryos
NOV 23, 2022
The Living 'Crystals' Formed by Starfish Embryos
Starfish embryos sprout appendages very early on in development, and they can spin around through water by propelling th ...
NOV 28, 2022
Neuroscience
Experimental Drug Halts Deadly Brain Cancer Growth Without Harming Brain Cells
NOV 28, 2022
Experimental Drug Halts Deadly Brain Cancer Growth Without Harming Brain Cells
  Researchers have found that blocking a certain enzyme halts the growth of a childhood brain cancer tumor. The cor ...
Loading Comments...