AUG 17, 2016 06:35 AM PDT

DNA Discovered to Fluoresce Naturally

WRITTEN BY: Carmen Leitch
It’s long been accepted that proteins, RNA and DNA have to be stained to be visualized under fluorescence; the belief has been that macromolecules in living cells don’t fluoresce by themselves. A research team at Northwestern University in Illinois has found however, that they do naturally fluoresce after all. The findings could greatly improve imaging and molecular studies at the micro- and nano-scale.
Image shows auto-fluorescence of an individual chromosome. Credit: Northwestern University
"There are textbooks that say biological molecules don't absorb light and don't fluoresce," said Zhang, an Associate Professor of Biological Engineering at Northwestern University. "It's what everyone learns; it's a part of training, so nobody questions it."

"Everybody has overlooked this effect because nobody asked the right question," commented Vadim Backman, the Walter Dill Scott Professor of Biomedical Engineering at Northwestern's McCormick School of Engineering. "It sounds cliché, but you get the answer to the question you ask. When we actually asked the right question, we got a very different answer than expected."

The researchers, publishing in the Proceedings of the National Academy of Sciences, figured out that when cellular molecules are illuminated with visible light, they are excited such that they can be imaged without having to use fluorescent staining. They determined that when using the right wavelength, they fluoresce more powerfully than they do when stained.

So why hasn’t anyone observed this phenomenon before? The scientists say the molecules were only in a “dark state” - meaning they were not emitting or absorbing light. However, that apparently does not mean they remain in that state forever. 

Backman uses athletic interval training as an illustrative example. "Sprinters alternate running very, very fast and resting," he explained. "You might catch them when they are resting and assume they aren't doing anything. That's what DNA and proteins do. They fluoresce for a very short time and then rest for a very long time."

Zhang highlights how advantageous it would be to eliminate the staining process. Such labeling is destructive to cells; after the dye is applied to living cells, they die. Stains specially created for use in living cells can only make the cells die more slowly. "This is ideal because staining is toxic," said Zhang, "and it makes imaging less precise."

"The cell might die in two hours, so you can still do imaging in the first half hour," Backman continued. "But what exactly are you measuring? What are you actually seeing? Are you looking at real processes of the cell? Or are you looking at processes in a cell that is about to die? Nobody knows."
Researchers are sure to follow up on this exciting finding, and hopefully we’ll be hearing more about this soon; not only the replication of the finding but its application to data acquisition. It will be very interesting indeed to compare results obtained without staining to what was seen by with it.

Sources: AAAS/Eurekalert! via Northwestern University, PNAS
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 07, 2018
Genetics & Genomics
NOV 07, 2018
Hunting Down the microRNAs That Influence Disease
Researchers want to identify the tiny, non-coding RNAs that control gene expression - and contribute to disease....
NOV 16, 2018
Microbiology
NOV 16, 2018
Testing the Impact of a Low-gluten Diet on Healthy People
Gluten-free diets have exploded in popularity in recent years, even for people who don't have documented food allergies....
NOV 24, 2018
Genetics & Genomics
NOV 24, 2018
How Fish can Teach us About Mending a Broken Heart
Our world hosts some incredible organisms, some of which might help people create treatments for disease....
NOV 26, 2018
Neuroscience
NOV 26, 2018
Most Rewarding Experiences Take The Top Spot In Memory
brain filters out neutral, inconsequential events, retaining only the memories that are useful to the future decisions....
NOV 28, 2018
Cell & Molecular Biology
NOV 28, 2018
Microbes with an Expanded Genetic Code can Generate new Proteins with Special Properties
In recent years, scientists have created microbes that incorporate new nucleotide bases and new amino acids....
DEC 03, 2018
Neuroscience
DEC 03, 2018
Brain size and Intelligence
Identifying the connection between the brain size to smartness has become much more plausible due to accuracy in estimating the brain size by using technologically advanced neuroimaging metho...
Loading Comments...