SEP 08, 2016 10:11 AM PDT

Commonly Used Cell Line no Longer Like Original

WRITTEN BY: Carmen Leitch
3 6 621
Cell lines are a critical part of biomedical research, used in many fields and manipulated in seemingly endless ways. They are immortalized, and basically can be cultured such that they will reproduce endlessly. In recent years, it’s come to the attention of researchers that many widely distributed and utilized lines are no longer like the original source of cells. To what extent can we trust results obtained from cell lines that do not resemble the source, and how well characterized was that source to begin with? These are becoming questions of critical importance to research at large. For more about cell line authentication, the video below has a primer, in which John Masters, Professor of Experimental Pathology, University College London emphasizes its importance.
 


A new paper published in Science Translational Medicine and led by Bengt Westermark has attempted to tackle these questions with regard to a very common and widely used cell line in cancer research, specifically one called U87MG. A special feature of this paper is that the team responsible for the work is performing it in the same laboratory that developed the line nearly 50 years ago, in 1968. The authors noted that this particular line has been utilized in about 200 studies that were published just in 2015, likely making it one of the most popular cell lines ever created.

What the researchers learned is a little distressing, especially for laboratories that work with the line, but maybe not an unmitigated disaster. Using the same kind of DNA fingerprinting used in forensic analysis, the investigators found that the line is still very likely representative of human glioblastomas, as was the source, based on a comparison of the genetic signature of U87MG to cancer cell lines. However, the genetic profile of the cells is different from what it was originally.

That forensic analysis is based on short tandem repeats, or STRs that tend to vary widely. That individuality means they make for very good identifiers. An explanation of that process is seen in the video below. In this work, the research team fond that twelve of fourteen STR markers were different when comparing the U87MG to its first source. The team suggests this could be due to contamination or some kind of mix-up.
 


The researchers suggest that to avoid these issues, not only is cell line authentication important, but scientists should move to glioma cell lines that have been verified and propagated in the ideal conditions that maintain their characteristics. Some cell lines are altered by the conditions in which they are grown, as is the case for gliomas. The investigators advocate for avoiding more ubiquitous and old cell lines that have been widely used and distributed over many years.

Many research journals including Nature publications, aware of this problem, have begun to require cell line authentication as part of the peer-review process. It's even become a commonly available service. Here, however, the researchers emphasize that such identification is only worthwhile if the origin of the line was well characterized. They posit that the cell line must be corroborated by a DNA profile that verifies that the cells match the tissue they intend to represent.

Sources: Science Translational Medicine, AAAS/Eurekalert!
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 12, 2018
Immunology
JUN 12, 2018
Auto-antibody Detection for Rheumatoid Arthritis Patients
No case of rheumatoid arthritis (RA), an autoimmune disease, is the same. Now, researchers want RA diagnostic approaches to match its pathological diversit
JUN 25, 2018
Cell & Molecular Biology
JUN 25, 2018
A Basic Rule of Brain Plasticity is Revealed
Our brains can adapt and learn; that changeability is called neural plasticity.
JUN 26, 2018
Health & Medicine
JUN 26, 2018
This Blood Test Can Tell if You Cheat on Your Diet
When a person ingests anything, be it food, drink or medication, it gets broken down in the bloodstream so that cells can absorb needed nutrients. When the
JUL 16, 2018
Cell & Molecular Biology
JUL 16, 2018
Preventing Aging by Protecting Ribosomes
We carry many genes for ribosomes in case we need backup copies - those parts of the genome tend to suffer damage.
JUL 27, 2018
Cell & Molecular Biology
JUL 27, 2018
Getting Water From an Internal Source
When snakes were deprived of water they turned to muscle to fill their needs.
AUG 11, 2018
Videos
AUG 11, 2018
Hit The Sweet Spot - MIT's Image Awards
MIT researchers are trying to engineer a smarter insulin.
Loading Comments...