NOV 18, 2016 04:28 PM PST

Quorum Sensing Prods Bacteria to Increase CRISPR/Cas Immunity

WRITTEN BY: Carmen Leitch
Bacteria can communicate information about population density to one another through a phenomenon called quorum sensing, and it’s known that they can alter gene expression in response. New research by investigators at the University of Otago in New Zealand has shown that with quorum sensing, bacteria ramp up their immune systems. Just as humans are susceptible to pathogens, so are microbes, and to combat those dangers, bacteria have the CRISPR/Cas system of immunity.
 
Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems  / Credit: Molecular Cell 2016 Patterson et al
 
The new work is published in Molecular Cell, and was led by Peter Fineran, an Associate Professor in the Department of Microbiology and Immunology. The graphical abstract from the work is shown above; the research elucidates more about how CRISPR/Cas works in populations of bacteria. The graphic illustrates that SmaR represses the expression of CRISPR and the cas gene in the absence of AHL signals
 
"As humans, we have evolved sophisticated immune systems that enable our bodies to fight the viral infections that render us ill. Amazingly, bacteria - although single celled organisms - often possess similar adaptive immunity called CRISPR/Cas systems. But the way that these CRISPR/Cas systems function is very much different to our own immune systems," he says.
 
The scientists observed that a bacterium is able to boost its immune system after receiving input about cell density fro other cells. "The higher the population density, the stronger the communication between cells becomes, which results in greater coordination of immune defenses," Fineran explained.
 
The researchers found that bacterial cells can defensively increase their immunity when the density makes them at risk of viral infection spreading through a crowded population. "They [bacterial cells] both increase their ability to generate new immune memories and strengthen existing immunity by up to 500-fold," explained the first author of the work, Adrian Patterson, a PhD student.
 
The discovery of CRISPR/Cas is relatively recent, and might be best known through its use as a tool for genome editing in a wide variety of applications in molecular biology. While scientists have gotten a lot of use out of it already, how it functions exactly in bacteria is still not yet completely understood.
 
In bacteria, CRISPR/Cas chops up the genetic material of viral infections it experiences and stores them as a type of immune memory. In that way, they can be used to recognize and fight future threats. The mechanisms by which bacteria control CRISPR/Cas are one of the murky areas. Over activity of the CRISPR/Cas system can be deleterious and result in the death of a bacterium, but inadequate activity can allow a virus to wipe out a community of bacteria. This new work shows that it is through quorum sensing that bacteria can achieve a proper and healthy balance.
 
Dr Simon Jackson, second author of the study, is fascinated by the study of bacterial immune systems. "Lately we have made significant advances in understanding how they function. The really exciting part of our most recent discovery is that we predict the communication-based coordination of CRISPR-Cas immunity to be widespread throughout bacterial species."
 

 
Watch the video above to learn more about quorum sensing; it features Bonnie Bassler, who discovered it. In the video below, you can watch Peter Fineran give a talk on CRISPR/Cas in bacteria at the EMBO Conference, 2012.
 

 
Sources: AAAS/Eurekalert! via University of Otago, Molecular Cell
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 17, 2019
Cell & Molecular Biology
OCT 17, 2019
Redundancies in a Protein Network Keep Development on Track
As tissues grow in a developing embryo, they have to fold in the right way to create the proper structures....
OCT 17, 2019
Cell & Molecular Biology
OCT 17, 2019
Discovery of Bone Bits in Blood may Help Explain Vascular Calcification
As we age, calcium can build up in various tissues in the body, and cause them to harden in a process called calcification....
OCT 17, 2019
Genetics & Genomics
OCT 17, 2019
Investigating Previously Unmapped Regions of the Human Genome
Researchers have used cutting edge imaging tools to map a region of the human genome that has not been well-described....
OCT 17, 2019
Microbiology
OCT 17, 2019
Antidepressants and Serotonin Impact Gut Microbiota
About 90% of the serotonin found in the human body is made in the gut. Some bacteria can encourage the release of serotonin from gut cells....
OCT 17, 2019
Cell & Molecular Biology
OCT 17, 2019
Why We Gain Weight as We Get Older
As people get older, they tend to start putting on weight. New work from an international team of researchers explains why....
OCT 17, 2019
Cell & Molecular Biology
OCT 17, 2019
Differences in Pediatric vs. Adult Cancer Force the Discussion of Effective Therapies
A team of scientists study the differences between childhood and adult cancer. This drives the discussion of the use of effective adult cancer treatments on children....
Loading Comments...