FEB 04, 2017 01:21 PM PST

Unraveling the Causes of Aging Using a Yeast Model

WRITTEN BY: Carmen Leitch

Yeast has long been used by researchers as a model organisms; it is inexpensive and easy to work with and has many genes and cellular functions with a high degree of similarity to human counterparts. Researchers have now used yeast to learn more about the cellular mechanisms underlying the aging process, discovering some of the genetic mechanisms that drive aging. It is not only a yeast cell or human body growing old and wearing out from use, aging is an dynamic event controlled by a specific group of genes. The work is briefly summarized in the following video.

The research has been described in two new reports published by a team of researchers working with Vladimir Titorenko, a Professor of Biology at the Faculty of Arts and Science at Concordia University. One report appears in the journal Frontiers in Genetics, the other can be found in Aging, both open access journals. The researchers have found that some genes are acting to accelerate the aging process while some can slow the process down. 

"We're the first to provide evidence for the existence of genetic mechanisms that limit lifespan," Titorenko said.

Titorenko has previously discovered a natural chemical called lithocholic acid that is capable of delaying aging. In this work, the investigators exposed the yeast to lithocholic acid. The result was a yeast that lived much longer, called "yeast centarians"  by the researchers. Those yeast survived five times longer than they normally would.

It was found that these yeast centarians had special mitochondria, a part of the cell that generates energy, which made more energy and consumed more oxygen than the mitochondria of normal yeast. Additionally, the yeast centarians were more resistant to another process involved in aging, oxidative stress.

The scientists now plan to utilize the yeast centarians to help settle a debate about two competing theories. One theory postulates that there is a genetic program that shortens the lifespan of organisms as part of a greater evolutionary purpose. Active processes would be at work to control aging and restrict lifespan. The other theory suggests that aging is not relevant to evolution; evolution does not have an interest in limiting lifespan so no evolved mechanism to control aging exists. This theory also says that a long-living organism would be likely to grow more slowly and reproduce with less efficiency than an organism with a limited lifespan.

The researchers have already shown that separate populations of normal and centarian yeast have equivalent reproduction and growth rates, suggesting that aging is indeed a programmed event that is under biological control.

Titorenko expects these findings will be applicable to human systems. "By confirming that there are active mechanisms limiting the longevity of any organism, we provided the first experimental evidence that such lifespan-limiting active mechanisms exist and can be manipulated by natural molecules to delay aging and improve health," he concluded.

In the following figure from the Frontiers in Genetics publication, the authors outline how the long-living yeast were generated in the laboratory.

Frontiers in Genetics Gomez-Perez et al 2017

 

Sources: AAAS/Eurekalert! via Concordia University, Frontiers in Genetics, Aging

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 01, 2018
Microbiology
NOV 01, 2018
Gut Bacteria can Have an Impact on Movement
One strain of gut bacteria can change how a fruit fly moves....
NOV 05, 2018
Videos
NOV 05, 2018
How UV Rays Cause Aging and Skin Cancer
We know that UV rays can do damage to our DNA - but how?...
NOV 10, 2018
Genetics & Genomics
NOV 10, 2018
Scientists Engineer a Better Way to Direct Evolution
Directed evolution is a Nobel-prize winning technique that has now been simplified and accelerated....
NOV 10, 2018
Videos
NOV 10, 2018
Engineering Viable Offspring From Same-sex Mouse Parents
Using a special kind of stem cell and genetic engineering, researchers have learned more about what's possible in reproduction....
NOV 26, 2018
Neuroscience
NOV 26, 2018
Conditioned Taste Aversion (CTA)
The negative reaction to certain foods when encountering a food due to adverse post ingestion consequences is called Conditioned Taste Aversion (CTA)....
NOV 26, 2018
Neuroscience
NOV 26, 2018
Ventromedial Prefrontal Cortex Central For Imagination Mitigated Fear
Extinction; presenting fear in a neutral setting where the negative consequences are negated is one of the successful fear conditioning mechanisms...
Loading Comments...