FEB 04, 2017 1:21 PM PST

Unraveling the Causes of Aging Using a Yeast Model

WRITTEN BY: Carmen Leitch

Yeast has long been used by researchers as a model organisms; it is inexpensive and easy to work with and has many genes and cellular functions with a high degree of similarity to human counterparts. Researchers have now used yeast to learn more about the cellular mechanisms underlying the aging process, discovering some of the genetic mechanisms that drive aging. It is not only a yeast cell or human body growing old and wearing out from use, aging is an dynamic event controlled by a specific group of genes. The work is briefly summarized in the following video.

The research has been described in two new reports published by a team of researchers working with Vladimir Titorenko, a Professor of Biology at the Faculty of Arts and Science at Concordia University. One report appears in the journal Frontiers in Genetics, the other can be found in Aging, both open access journals. The researchers have found that some genes are acting to accelerate the aging process while some can slow the process down. 

"We're the first to provide evidence for the existence of genetic mechanisms that limit lifespan," Titorenko said.

Titorenko has previously discovered a natural chemical called lithocholic acid that is capable of delaying aging. In this work, the investigators exposed the yeast to lithocholic acid. The result was a yeast that lived much longer, called "yeast centarians"  by the researchers. Those yeast survived five times longer than they normally would.

It was found that these yeast centarians had special mitochondria, a part of the cell that generates energy, which made more energy and consumed more oxygen than the mitochondria of normal yeast. Additionally, the yeast centarians were more resistant to another process involved in aging, oxidative stress.

The scientists now plan to utilize the yeast centarians to help settle a debate about two competing theories. One theory postulates that there is a genetic program that shortens the lifespan of organisms as part of a greater evolutionary purpose. Active processes would be at work to control aging and restrict lifespan. The other theory suggests that aging is not relevant to evolution; evolution does not have an interest in limiting lifespan so no evolved mechanism to control aging exists. This theory also says that a long-living organism would be likely to grow more slowly and reproduce with less efficiency than an organism with a limited lifespan.

The researchers have already shown that separate populations of normal and centarian yeast have equivalent reproduction and growth rates, suggesting that aging is indeed a programmed event that is under biological control.

Titorenko expects these findings will be applicable to human systems. "By confirming that there are active mechanisms limiting the longevity of any organism, we provided the first experimental evidence that such lifespan-limiting active mechanisms exist and can be manipulated by natural molecules to delay aging and improve health," he concluded.

In the following figure from the Frontiers in Genetics publication, the authors outline how the long-living yeast were generated in the laboratory.

Frontiers in Genetics Gomez-Perez et al 2017

 

Sources: AAAS/Eurekalert! via Concordia University, Frontiers in Genetics, Aging

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 10, 2019
Immunology
DEC 10, 2019
T Cell Subset Uniquely Equipped to Target IBD
A specialized form of T cell emerges as a new focus for gastrointestinal health research, specifically in the context of inflammatory bowel disease (IBD) f...
DEC 15, 2019
Microbiology
DEC 15, 2019
Potential Therapeutics for Nipah Virus Are Identified
The fatality rate of Nipah virus has an estimated range of 40 to 75 percent...
DEC 20, 2019
Neuroscience
DEC 20, 2019
Hand-Motion Center of the Brain Involved in Speech
During a long-term study focused on improving computer-assistant interfaces for quadriplegia patients, researchers at Stanford University were able to use...
JAN 11, 2020
Neuroscience
JAN 11, 2020
Molecular Therapy to Self-Repair Nerve Cells
Neurodegenerative diseases such as Multiple Sclerosis (MS), Alzheimer's, and Huntington's Disease are predicated on damage to myelin on nerve cells...
JAN 27, 2020
Cell & Molecular Biology
JAN 27, 2020
The 3D Ultrastructure of a Cell is Revealed
Seeing what's going on inside of cells presents many challenges that advances in microscopy have tried to address....
JAN 27, 2020
Microbiology
JAN 27, 2020
Microbes in Household Dust May Be Spreading Antibiotic Resistance
Bacteria live in household dust, and sometimes a few of those microbes are pathogenic or carry genes that confer resistance to antibiotics....
Loading Comments...