MAR 21, 2017 3:39 PM PDT

Using Plant Material as Cellular Scaffolds

WRITTEN BY: Carmen Leitch

Nature has given people a rich resource of materials we can use for myriad purposes, and humans have turned to nature for inspiration when solving problems. Once again, nature is delivering tools and inspiration; scientists have looked to plant materials to create three-dimensional scaffolds that cells are able to grow on. That mix of scaffolding and human stem cells opens up the possibility for the manufacture of biomedical materials and implants. Reporting in Advanced Healthcare Materials, researchers led by William Murphy, a professor of biomedical engineering and co-director of the UW-Madison Stem Cell and Regenerative Medicine Center, have utilized decellularized plant husks as scaffolding. 

Human fibroblast cells, common connective tissue cells, growing on decellularized parsley / Credit: Gianluca Fontana

"Nature provides us with a tremendous reservoir of structures in plants," said lead author Gianluca Fontana, a UW-Madison postdoctoral fellow. "You can pick the structure you want." Plants are ideal for use in this project for so many reasons; they come in every imaginable shape and size, they are inexpensive and easy to grow, and the structural characteristics of plants are perfect for this application. They are strong and flexible, they are porous and have a low mass and large surface area. "Plants are really special materials as they have a very high surface area to volume ratio, and their pore structure is uniquely well-designed for fluid transport," explained Murphy.

The team at UW-Madison team turned to Madison's Olbrich Botanical Gardens and curator John Wirth to determine which plant species might be good to grow at the small scale needed for biomedical applications. Parsley and orchid were identified as candidates along with bamboo, elephant ear plants and wasabi; their form and structure would likely work in the creation of scaffolds with the properties necessary for use in bioengineering. 

"The vast diversity in the plant kingdom provides virtually any size and shape of interest," said Murphy, who was inspired to look to the plant world by his office window view onto UW-Madison's Lakeshore Nature Preserve. "It really seemed obvious. Plants are extraordinarily good at cultivating new tissues and organs, and there are thousands of different plant species readily available. They represent a tremendous feedstock of new materials for tissue engineering applications."

Cellulose is the primary component of cell walls in green plants; the researchers found that after stripping everything away from the plants and treating the remaining husks of cellulose with the right chemical cocktail, human stem cells could then attach and grow on the structures. 

A human fibroblast cell finds a home on a lilac leaf. / Credit: Gianluca Fontana

The scaffolds are seeded with stem cells that also, according to Fontana, tend to align themselves with the scaffold structure. "Stem cells are sensitive to topography. It influences how cells grow and how well they grow." That alignment onto the scaffold pattern may also allow researchers to control the structure and growth of the stem cells. That would be an important feature for any application meant for use on muscle tissues or nerves.

Murphy also noted that plant scaffolds have the added benefit of easy manipulation and manufacture. "They are quite pliable. They can be easily cut, fashioned, rolled or stacked to form a range of different sizes and shapes."

The investigators still need to try out their scaffolds in an animal model, and they plan to perform such research in the near future. "Toxicity is unlikely, but there is potential for immune responses if these plant scaffolds are implanted into a mammal," said Murphy. "Significant immune responses are less likely in our approach because the plant cells are removed from the scaffolds."

Scientists have been at work developing tissue scaffolds for awhile. You can check out MIT courseware on tissue scaffolds in the above video.

 

Sources: AAAS/Eurekalert! via University of Wisconsin-Madison, Advanced Healthcare Materials

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 15, 2020
Immunology
Immune Memory to Thwart Recurring Cancer
JUL 15, 2020
Immune Memory to Thwart Recurring Cancer
Preventing cancer from returning in the body is an integral part of any anti-cancer treatment plan. New discoveries from ...
JUL 28, 2020
Microbiology
After 100 Million Years Under the Seafloor, Ancient Microbes Come Alive
JUL 28, 2020
After 100 Million Years Under the Seafloor, Ancient Microbes Come Alive
It has been said that we know more about the moon than we do about the bottom of the ocean, though explorers and researc ...
AUG 11, 2020
Cell & Molecular Biology
New Microscopy Tools Reveal More About the Role of Actin
AUG 11, 2020
New Microscopy Tools Reveal More About the Role of Actin
Cells rely on a network of tiny filaments to give them form and support their structure. One crucial filament is a prote ...
AUG 05, 2020
Neuroscience
Mitochondrial Enzyme Used to Measure Brain Power Supply
AUG 05, 2020
Mitochondrial Enzyme Used to Measure Brain Power Supply
A new study from University College London (UCL) confirms that the brain steadily uses 20% of the body’s metabolic ...
AUG 27, 2020
Microbiology
Underground Microbes Use an Ancient Form of Energy Production
AUG 27, 2020
Underground Microbes Use an Ancient Form of Energy Production
Organisms rely on a biological fuel known as ATP, which provides the energy for many processes. In cellular respiration, ...
SEP 09, 2020
Microbiology
Changing How We Think of Drug Resistance in Fungi
SEP 09, 2020
Changing How We Think of Drug Resistance in Fungi
It's been estimated that fungal infections cause more than one million deaths worldwide, and many more are affected.
Loading Comments...