MAR 19, 2015 09:40 AM PDT

Modeling how cells move together could inspire self-healing materials

A paper published yesterday in Nature's Scientific Reports by a team led by physicist Igor Aronson of the U.S. Department of Energy's Argonne National Laboratory modeled the motion of cells moving together. Their findings may help scientists design new technologies inspired by nature, such as self-healing materials in batteries and other devices.

Aronson has long been interested in how very small bodies move-the principles that govern their motion, especially in crowds, can be very different than principles at the macro scale.

Cells frequently migrate en masse-to the site of a wound, say, to do a quick patch job on the skin-but the dynamics of how they do so are not fully understood.

Aronson and his colleagues created a model of about 100 cells and investigated how the cells spontaneously began to migrate, based on collisions with one another. As they collided, the cells began to move at the same speed and formed into coherent, traveling flocks.

The team wanted to see how movement changed as they varied how much the cells stuck to one another (called adhesion), how fast they were moving and how stiff the cells and surrounding tissue were. Each combination changed how the cells behaved.

When adhesion was high, cells formed large moving mats resembling living tissues; with moderate adhesion, they formed smaller clusters that broke up and reformed constantly, limiting the collective motion. At low adhesion, it took many collisions before the cells began to travel loosely together, like a school of fish.

"This also suggests ways that cells can solve complex navigation problems, by sensing how stiff and how sticky the substrate they are moving on is," Aronson said.

"These approaches can inform how we go about designing self-healing materials," he said. Scientists are very interested in creating ways for complex devices, like batteries, to have built-in methods of repairing cracks in the electrodes. (In one approach, tiny capsules full of metal can burst open in response to mechanical stress and fill in cracks.) For example, particles could be designed with particular stiffness and adhesion to move quickly or form groups of different sizes; or particles could be guided to destinations by stamping surfaces with adhesive patterns.

The study, "Collisions of deformable cells lead to collective migration," was supported by the U.S. Department of Energy's Office of Science, Office of Basic Energy Sciences, Materials Engineering Division, and by the German Science Foundation. The other authors of this work are Falko Ziebert with the University of Freiburg and Jakob Löber with the Technical University of Berlin in Germany.

Source: phys.org
About the Author
You May Also Like
SEP 21, 2019
Genetics & Genomics
SEP 21, 2019
Combination Therapy Eliminates HIV From Rodent Model
In 2017, 1.8 million new cases of HIV infection were diagnosed around the world, and around 37 million people live with the virus....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
Directing Stem Cells to the Heart
Damaged tissue, such as heart cells that have died during a heart attack, could be repaired with stem cells if they are applied in the right way....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
How Genetic Gatekeepers Guide the Development of Organisms
Many of the same genes can be found in different organisms, from yeast to humans, which has allowed researchers to study the role of human genes in model organisms....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
How the Kava Plant Creates Medicinal Compounds
Nature has given us some of our best medicines; it's thought that as many as half the drugs we used are derived from natural products....
SEP 21, 2019
Microbiology
SEP 21, 2019
Electric Bacteria Form Undersea Networks of Conductivity
A team of scientists has found that bacteria can act like power lines, and send electrical currents over long distances....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
How Proteins Send Instant Messages
Our cells use proteins as messengers that send or receive critical signals to carry out the functions essential for life....
Loading Comments...