APR 03, 2017 3:26 PM PDT

Why Fertility Declines in Women as They Age

WRITTEN BY: Carmen Leitch

Women experience a pronounced decline in fertility as they get older; researchers have now learned more about why, and it could help explain more about female infertility. Powerful microscopy techniques utilized by scientists at the University of Montreal Hospital Research Center (CRCHUM) showed that there is a specific defect in the eggs of older mice. The complex process of cell division is dysfunctional, and it results in problems with chromosome distribution. These results have published in Current Biology, and are outlined in the following video.

"We found that the microtubules that orchestrate chromosome segregation during cell division behave abnormally in older eggs. Instead of assembling a spindle in a controlled symmetrical fashion, the microtubules go in all directions. The altered movement of the microtubules apparently contributes to errors in chromosome segregation, and so represents a new explanation for age-related infertility," said senior author Greg FitzHarris, a Université de Montréal professor and CRCHUM researcher.

Women and other female animals are only born with a certain number of eggs. Those eggs are dormant until the ovaries begin to release them, one during each menstrual cycle. Fertility then begins to significantly decline around age 35.

"One of the main causes of female infertility is a defect in the eggs that causes them to have an abnormal number of chromosomes. These so-called aneuploid eggs become increasingly prevalent as a woman ages. This is a key reason that older women have trouble getting pregnant and having full-term pregnancies. It is also known that these defective eggs increase the risk of miscarriage and can cause Down's syndrome in full-term babies" explained FitzHarris.

It had been thought that increasing age increases the likelihood of aneuploid eggs because a sort of glue that binds chromosomes together doesn’t work as well in older eggs. This concept has been termed the "cohesion-loss" hypothesis. 

"Our work doesn't contradict that idea, but shows the existence of another problem: defects in the microtubules, which cause defective spindles and in doing so seem to contribute to a specific type of chromosome segregation error,” FitzHarris suggested. During cell division, chromosomes are segregated in a special way by cellular structures called microtubules. 

The researchers connected dysfunction in these older eggs with microtubules. “In mice, approximately 50% of the eggs of older females have a spindle with chaotic microtubule dynamics,”  FitzHarris said.

The scientists investigated further by micromanipulating mice eggs when the mice were between the ages of 6 and 12 weeks (a young group) and at 60 weeks mice (an old group). "We swapped the nuclei of the young eggs with those of the old eggs and we observed problems in the old eggs containing a young nucleus," explained Shoma Nakagawa, a postdoctoral research fellow at the CRCHUM and at the Université de Montréal. "This shows that maternal age influences the alignment of microtubules independently of the age of the chromosomes contained in the nuclei of each egg."

The research team led by FitzHarris noted that spindle defects are a problem in humans as well. Basically, the machinery of the cells doesn’t work as efficiently in older eggs, and that problem is not due to the age of the chromosomes.

This work may aid women with fertility issues, both to become pregnant and to carry a pregnancy to term. "We are currently exploring possible treatments for eggs that might one day make it possible to reverse this problem and rejuvenate the eggs," explained FitzHarris.

A lot more work will be necessary before that goal is realized, but this research helps lay important groundwork. 

 

 

Sources: AAAS/Eurekalert! via CRCHUM, Current Biology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 07, 2021
Genetics & Genomics
Tumor Growth in NF1 Kids May Begin When Optic Nerve Fires
JUN 07, 2021
Tumor Growth in NF1 Kids May Begin When Optic Nerve Fires
Young children who are born with neurofibromatosis type 1 are at heightened risk of having vision problems because they ...
JUN 13, 2021
Cell & Molecular Biology
The DNA Content of a Cell Helps Control Its Size
JUN 13, 2021
The DNA Content of a Cell Helps Control Its Size
Cells have to maintain the right size; bacterial and eukaryotic cells tend to have a characteristic size, but that may a ...
JUL 09, 2021
Cell & Molecular Biology
Wearable Tech for...Plants?
JUL 09, 2021
Wearable Tech for...Plants?
Researchers have developed a "wearable" patch to detect the gaseous substances plants emit when diseased or stressed,
JUL 11, 2021
Cell & Molecular Biology
A Taste for Sugar is Discovered in Songbirds
JUL 11, 2021
A Taste for Sugar is Discovered in Songbirds
It's been thought that songbirds are unable to taste sugar. Songbirds lack a protein that's crucial for many animals inc ...
JUL 12, 2021
Genetics & Genomics
Vision of Retinitis Pigmentosa Patient Partially Restored by New Therapy
JUL 12, 2021
Vision of Retinitis Pigmentosa Patient Partially Restored by New Therapy
Scientists have been developing gene therapies that can help restore vision that's lost due to a problem with a gene ...
JUL 18, 2021
Genetics & Genomics
Only 7% of the Human Genome or Less is Unique to Modern Humans
JUL 18, 2021
Only 7% of the Human Genome or Less is Unique to Modern Humans
Genetic tools have enabled scientists to assess the evolution of humans through DNA, and researchers have shown that mod ...
Loading Comments...