JUL 12, 2017 3:56 PM PDT

Sweat Gland Structure Revealed in Unprecedented Detail

WRITTEN BY: Carmen Leitch

There is incredible complexity within the sweat gland, as such, it has been challenging to learn more about it in depth. It is known that human sweat glands contain a coiled secretory region that lies deep within the skin, while a tube directs sweat towards the skin surface through a pore. There have been technical hurdles to understanding more about these glands. However, new work changes that.

Highlighting LN332 and LAMA5 protein in sweat glands / Credit: Detail from Kurata et al PLOS One

Researchers at Osaka University have made a breakthrough in our understanding of sweat glands. Utilizing a technique called whole-mount immunostaining, they have revealed the structure of sweat glands at the level of a single cell. That new data has shed light on the how the various components function. The scientists think that this new work could help develop treatments for disorders that impact perspiration.

Commonly, structures in cells are studied by obtaining a block of tissue and then slicing it into thin sections, which are then treated further with labels and dyes that allow researchers to identify specific features. While it is easier than ever to reconstruct a three-dimensional view of the tissue block and visualize the structures from the treated slices, there are limits to this methodology. Sometimes the complicated preparation of the tissue alters it and interferes with our understanding of the true features.

Reporting in PLOS One, the investigators have risen to meet these challenges. Whole-mount immunostaining was utilized, which highlights sweat glands after all of the surrounding connective tissue of the skin has been removed. As such, features could be seen intact and unaltered.

"Whole-mount immunostaining allows us to view the sweat gland structures seamlessly, without interruptions for sectioning, which is very important given that part of the gland has tubes that are entangled with each other in a very complicated way," Kiyotoshi Sekiguchi said. "We revealed the different cross-sectional shapes of these tubes and the cells that they're made of."

This is a detail three-dimensional structure of human sweat gland. / Credit: Osaka University

The team's findings reveal the importance of myoepithelial cells, which work together to contract the secretory region of the gland and push sweat to the surface. This work also indicates that the sweat gland is interacting with blood vessels and nerves. These results may be a new clue as to how sweating becomes dysfunctional.

"This knowledge about sweat gland structure and function could have many clinical applications, and even lead to strategies for treating heatstroke," Ryuichiro Kurata said. "Because of the high-resolution findings that our approach provides, we can even determine the density of nerve fibers in sweat glands, helping to diagnose specific sweating-related disorders and to select appropriate treatments."

 

Sources: AAAS/Eurekalert! via Osaka University, PLOS One

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 02, 2020
Immunology
APR 02, 2020
Transforming T Cells into Powerful Memory Cells That Target Cancer
New cancer treatments are now based on harnessing the power of the human body’s own immune cells to get the job do ...
APR 13, 2020
Neuroscience
APR 13, 2020
The Memory Cells that Help Us Interpret Different Situations
Neuroscientists from MIT have identified cell populations that encode different parts of an overall experience. Like the ...
MAY 06, 2020
Cell & Molecular Biology
MAY 06, 2020
SARS-CoV-2 Can Infect Intestinal Cells
Once thought to cause symptoms that primarily affect the respiratory system, there has been evidence that the virus can ...
MAY 12, 2020
Microbiology
MAY 12, 2020
Understanding How Giant Viruses Can Infect Cells
Melting permafrost has been revealing some remarkably well-preserved and extremely old stuff, like a prehistoric puppy a ...
MAY 14, 2020
Genetics & Genomics
MAY 14, 2020
Tracking Single Cells as They Build an Adult Organism
Organisms develop from a single cell that gives rise to all the different kinds of tissues and structures that are found ...
MAY 27, 2020
Cell & Molecular Biology
MAY 27, 2020
A Deeper Understanding of How Some Bacterial Toxins Interact With Cells
The surfaces of cells are decorated with receptors, and the interactions between receptors and their binding partners ar ...
Loading Comments...