AUG 17, 2017 06:14 PM PDT

Stem Cell Activation Causes Hair to Grow

WRITTEN BY: Carmen Leitch

Stem cell activation may be a new therapeutic avenue for baldness or alopecia, in which hair is lost because of aging, chemotherapy, stress or hormonal imbalances. Researchers at UCLA have developed a method to stimulate such cells in hair follicles, finding that it causes hair growth. This work is outlined in the video below and had been reported in Nature Cell Biology.

Hair follicles contain stem cells, which are normally inactive or quiescent. But when a new hair cycle starts and hair growth begins, the stem cell in the follicle becomes active. Many factors influence that activation of stem cells. When the activation fails, hair loss occurs.

Researchers Heather Christofk and William Lowry of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA determined that the stem cells of hair follicles have a different metabolism than other skin cells. As cells consume materials they require for energy, nutrients are broken down by enzymes and metabolites are produced. When hair follicle stem cells metabolize glucose, one such metabolite is pyruvate. The pyruvate is then either sent to the cell’s mitochondria, or the pyruvate can be broken down further into lactate.

“Our observations about hair follicle stem cell metabolism prompted us to examine whether genetically diminishing the entry of pyruvate into the mitochondria would force hair follicle stem cells to make more lactate and if that would activate the cells and grow hair more quickly,” said Christofk, an Associate Professor of Biological Chemistry and Molecular and Medical Pharmacology.

When the investigators turned to a mouse model and halted lactate production through genetic engineering, stem cells in hair follicles did not activate. Further studies with collaborators in the Rutter lab at the University of Utah indicated that when lactate production was genetically promoted in mice, hair follicle activation was accelerated and the hair cycle increased.

Untreated mouse skin showing no hair growth, left, compared to mouse skin treated with the drug UK5099 showing hair growth. / Credit: UCLA Broad Stem Cell Center/Nature Cell Biology

“Before this, no one knew that increasing or decreasing the lactate would have an effect on hair follicle stem cells,” noted Lowry, a Professor of Molecular, Cell and Developmental Biology. “Once we saw how altering lactate production in the mice influenced hair growth, it led us to look for potential drugs that could be applied to the skin and have the same effect.”

Two drugs were found that were able to stimulate lactate production in the skin of mice. The drugs worked in different ways. One, RCGD423, activated a pathway in cells called JAK-Stat; the subsequently increased lactate production drove cell activation and hair growth. The other drug, UK5099, stops pyruvate from going to the mitochondria. That forces lactate production in hair follicle stem cells and in mice, hair growth accelerates. These drugs have unfortunately not yet been tested in people.

“Through this study, we gained a lot of interesting insight into new ways to activate stem cells,” said first author Aimee Flores, a predoctoral fellow in the Lowry lab. “The idea of using drugs to stimulate hair growth through hair follicle stem cells is very promising given how many millions of people, both men and women, deal with hair loss. I think we’ve only just begun to understand the critical role metabolism plays in hair growth and stem cells in general; I’m looking forward to the potential application of these new findings for hair loss and beyond.”

 

 

Sources: UCLA, Nature Cell Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 24, 2018
Microbiology
AUG 24, 2018
How the E. coli Bacterium Can Benefit Us
Often thought of as a dangerous germ, it seems that E. coli may be playing a helpful role in the uptake of iron....
AUG 24, 2018
Cell & Molecular Biology
AUG 24, 2018
Chronic Allergies can Change Cells
Chronic rhinosinusitis is different from allergies; it leads to serious inflammation and swelling in the sinuses that can last for years....
SEP 27, 2018
Genetics & Genomics
SEP 27, 2018
Learning What Causes Algae Blooms to Turn Toxic
According to the EPA, algal blooms threaten every state and in our changing climate, they may be more common....
OCT 02, 2018
Drug Discovery
OCT 02, 2018
Compound Found In Fruits and Vegetables May Be The Next Anti-Aging Drug
According to early research published in Nature Medicine, it was found possible to increase the longevity of damaged cells, extend the lifespan, and improv...
OCT 18, 2018
Cell & Molecular Biology
OCT 18, 2018
An Unexpected Role for Astrocytes
The brain starts out as a dynamic organ that is capable of many changes. That flexibility allows us to learn, adapt and grow....
OCT 18, 2018
Genetics & Genomics
OCT 18, 2018
Expanding the List of Genes That Cause Multiple Sclerosis
For many years, researchers have been searching for the genetic influences that affect the development of MS....
Loading Comments...