SEP 09, 2017 06:54 AM PDT
Gold Nanoparticles Destroy Cancer in Mice
WRITTEN BY: Carmen Leitch
2 6 525

Researchers at a University of Colorado Cancer Center want to perfect the use of gold nanoparticles in cancer therapeutics. They have engineered a tool that can target tumor cells, and destroy them. Their findings have been reported in the journal Bladder Cancer.

False color scanning electron micrograph (250,000 times magnification) showing the gold nanoparticles created by NIST and the National Cancer Institute's Nanotechnology Characterization Laboratory (NCL) for use as reference standards in biomedical research laboratories. / Credit: Andras Vladar, NIST

Gold has special properties that make it attractive for use as a delivery system in human patients, like being small and non-toxic.  Molecules are attached to the gold particles, and they are then imbued with the abilities to carry out anti-cancer functions. In this work, scientists at CU Cancer Center made a particle that can recognize and attach to a protein called EGFR - an EGFR antibody. The EGFR protein is present on the cells of tumors, but not healthy cells, in the bladder. That antibody can be coupled with chemotherapy agents in the gold nanoparticle delivery system that can target tumors cells directly.

The researchers wanted to take it a step further and imbue the gold nanoparticles with the ability to destroy tumors as well. They used something called plasmon resonance, in which nanoparticles vibrate in response to certain light frequencies. The investigators tuned their gold nanoparticles so they would undergo plasmon resonance, a type of energy transfer, in response to near infrared light. The light itself is safe, but when the tuned gold nanoparticles were exposed to it, they became excited, heated up and blasted the nearby tissue.

Because the mice in this research had very small bladder tumors, the researchers had to use bioluminescence to evaluate the efficacy of their new technique. Basically, in this system, the more a bladder glows, the more cancer is present, and if the nanoparticles kill cancer cells, the bladder will emit less light.

After comparing mice that got an EGFR-directed nanoparticle injection coupled with laser light to mice that had only been exposed to laser light, it was found that the mice treated with nanoparticles did have less light emitting from their cancerous bladders. The tumors also glowed less than they had prior to the treatment, suggesting that the method can slow or even reverse tumor growth, with minimal side effects.

"We are highly encouraged by these results," commented Thomas Flaig, MD, Associate Dean for Clinical Research at University of Colorado School of Medicine and Chief Clinical Research Officer of UCHealth. This work is the product of a collaboration between Flaig and Won Park, Ph.D., the N. Rex Sheppard Professor in the Department of Electrical, Computer & Energy Engineering at CU Boulder.

"It's one of the great stories in scientific collaboration - Won was on a sabbatical of sorts here on campus and we sat down and started talking about ideas around our mutual interests. How could we bring the nanorods to a tumor? The answer was EGFR. What cancer site would allow us to deliver infrared light? Oh, the bladder! And how would we deliver it? Well, in bladder cancer there are already lights on the scopes used in clinical practice that could do the job. It's been an interesting problem-solving experience pursuing this technique from a futuristic idea to something that now shows real promise in animal models," Flaig said.

Find out more about how gold nanoparticles are used to destroy cancer from this video, which discusses how the technique is applied to prostate cancer.

 

Sources: AAAS/Eurekalert! Via UC Denver, Wikipedia, Bladder Cancer

About the Author
  • Experienced research scientist and technical expert...
You May Also Like
MAY 09, 2018
Microbiology
MAY 09, 2018
What we can Learn From Viruses that Infect Bacteria
Phages are viruses that infect bacteria; scientists have found that the same phage can have a markedly different effect on different kinds of bacteria.
MAY 14, 2018
Microbiology
MAY 14, 2018
Understanding how the Microbiome is Built
Our body usually acts to kill invading microbes. So researchers wanted to know how the gut microbe gets around those defenses.
MAY 31, 2018
Genetics & Genomics
MAY 31, 2018
Newly Found Genes are Critical to Human Brain Development
While investigating how the human brain evolved, scientists found a region of the genome about which little is known; they have since connected it to autism.
JUN 12, 2018
Cell & Molecular Biology
JUN 12, 2018
Loss of Brain Lesions may Indicate Worsening MS
New research could help doctors determine how severe a case of multiple sclerosis will become.
JUN 18, 2018
Genetics & Genomics
JUN 18, 2018
Repairing Epigenetic Imbalance may Relieve Alzheimer's
When the balance between two enzymes was restored, it relieved symptoms of Alzheimer's in an animal model.
JUN 21, 2018
Cell & Molecular Biology
JUN 21, 2018
Are Patterns in Biology Governed by a Turing Theory?
Alan Turing didn't only contribute to computing & mathematics. He also developed a theory about how biological patterns form.
Loading Comments...