SEP 22, 2017 8:09 PM PDT

Enzyme That Regulates Fat Linked to Disease

WRITTEN BY: Carmen Leitch

Enzymes play critical roles in our metabolism; one in particular, phosphatidic acid phosphatase, is known as an important regulator of fat in the human body. If we are to fight obesity successfully, it is vital to understand more about the function of this enzyme. New work from researchers at Rutgers University-New Brunswick has indicated that eliminating this enzyme can cause an increase in susceptibility to cancer and inflammation, which underlies many diseases. This research has been reported in the Journal of Biological Chemistry.


"The goal of our lab is to understand how we can tweak and control this enzyme," said George M. Carman, Board of Governors Professor in the Department of Food Science in the School of Environmental and Biological Sciences. "For years, we have been trying to find out how to fine-tune the enzyme's activity so it's not too active, and creating too much fat, but it's active enough to keep the body healthy." Learn more about the work from the video.

After the enzyme was discovered in 1957, the gene that encodes for phosphatidic acid phosphatase was identified in 2006 by Gil-Soo Han, a Research Assistant Professor in the Rutgers Center for Lipid Research. It controls whether phosphatidic acid in the body is utilized for making fat, or for the creation of lipids that make up cell membranes. After the gene was found, investigators have tried to elucidate how it plays a role in disease states like diabetes, lipodystrophy, obesity, and inflammation, among other disorders, said Carman. 

For this work, baker’s yeast was used as a model because it carries the enzyme. Han, who was the lead author of the report, eliminated a gene in the yeast to remove the enzyme. The scientists then saw that phosphatic acid accumulated and cells began to make too many membrane lipids, more than was necessary, explained Carman.

Fat is stored in lipid droplets (bright green spots) in yeast cells, which is analogous to how fat is stored in human tissue. / Credit: Gil-Soo Han/Rutgers University-New Brunswick

"We have found that (maybe) a more critical role for the enzyme is to make sure that cells are not making too much membrane lipid," suggested Carman, who founded the center in Rutgers' New Jersey Institute for Food, Nutrition, and Health. "If you make too much membrane lipid, you make too much membrane, and the cells are permitted to grow uncontrollably, a condition characteristic of cancer."

The Rutgers scientists have been building on this work; they are now investigating the structure and function of the enzyme. The next goal is to determine out how to manipulate it, Carman said. "The key take-home message is that things have to be balanced," he noted. "To keep the balance between making storage fat and membrane lipid, you have to have balanced diet."


Sources: AAAS/Eurekalert! Via Rutgers UniversityJournal of Biological Chemistry

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 18, 2019
Drug Discovery & Development
DEC 18, 2019
A tool that simplifies the hunt for cancer drugs
Cells have long been the internal hubs for proteins that hold a wide variety of unique functions. Disorders on how a cell synthesizes a protein can affect ...
JAN 02, 2020
Microbiology
JAN 02, 2020
New Ideas About How Bacteria Control Cell Division
Cell division is a crucial process for life; in order to create and maintain multicellular organisms, cells have to make more cells by dividing....
JAN 15, 2020
Cell & Molecular Biology
JAN 15, 2020
Cell Division Research Reveals More About a Protein That's Elevated in Cancer
Cell division is a carefully regulated process, cancer is the result when it gets out of control....
JAN 28, 2020
Cell & Molecular Biology
JAN 28, 2020
A Rare Genetic Disorder is Effectively Treated With Modified Stem Cells
A clinical trial used stem cell gene therapy to treat a rare genetic disorder called X-CGD. Image credit: UCLA Broad Stem Cell Research Center/Nature Medicine...
FEB 03, 2020
Cell & Molecular Biology
FEB 03, 2020
Brain Organoids May Not be Living Up to the Hype
Cells can be grown in special ways to create three-dimensional, miniature models of organs. But how good are they?...
FEB 03, 2020
Microbiology
FEB 03, 2020
The Switch Controlling the Stage of a Common Parasite
The parasite Toxoplasma gondii is thought to infect from one-quarter to one-third of the global population....
Loading Comments...