JAN 03, 2018 3:30 PM PST

Microscopy Reveals Path to Kidney Stone Treatment

WRITTEN BY: Carmen Leitch

By using a powerful microscopy technique that won a Nobel prize last year, researchers have revealed the structure of an ion channel that is critical to the kidney, and the data could help create new treatments for painful kidney stones. This work, reported in Nature Structural and Molecular Biology, has provided atomic-level information about the channel, which gives calcium ions a way to move across cell membranes in the kidneys. Kidney stones, importantly, are primarily composed of calcium. 

Kidney stones usually comprised of a compound called calcium oxalate, and are the result of an accumulation of dissolved minerals on the inner lining of the kidneys. / Credit: Wikimedia Commons/Jakupica

Kidney stones are known for being excruciating to pass, and sometimes they are so large or are located in a place where surgery is necessary to remove them. Ion channels in the kidneys help remove calcium from urine before kidney stones can form. This report details the molecular structure of the TRPV5 ion channel when closed; it also shows how inhibitor molecules bind to the channel, closing it. That action restricts the calcium, keeping it in the urine where kidney stones might form.

"Now that we know what the protein looks like in its inhibited state, drugs can be made with the intention of modulating TRPV5 activity and potentially treating kidney stones directly," noted first author Taylor Hughes, a doctoral candidate in the Department of Pharmacology at Case Western Reserve University School of Medicine.

For this work, Hughes and colleagues employed cryo-electron microscopy, winner of the 2017 Nobel prize in Chemistry, to analyze rabbit TRPV5 bound to econazole, its inhibitor molecule. Cryo-electron microscopy (described in the video) allowed the scientists to analyze the atomic structure of the protein; they saw different portions of the protein such as the part which crosses the membrane of kidney cells, or the attachment site for inhibitors. 

"When performing cryo-electron microscopy, we shoot electrons at our frozen protein and it allows us to take pictures of individual protein molecules. With these pictures and advanced computer software, we are able to create 3D models of these molecules. These 3D models have the potential to be so precise that we can actually see the atoms that make up the protein," Hughes explained.

Those 3D models enabled the researchers to predict how TRPV5 opens and closes. "To understand how a protein moves we need multiple structures to compare to one another," Hughes said. "We were able to draw conclusions about the mechanisms of action by comparing our inhibitor-bound structure to a previously published TRPV6 structure solved without an inhibitor. TRPV5 and TRPV6 are part of the same subfamily of proteins and very similar in sequence as well as structure." 

"This publication is the first time the structure of TRPV5 has been solved. Now, structures for four of the six TRPV subfamily members are available at near-atomic resolution for further scientific investigation," Hughes said. The researchers suggest that future studies might include targeted therapeutics that alter the protein channels in patients that suffer from kidney stones.

Learn more about kidney stones from this Ted Talk.


Sources: AAAS/Eurekalert! Via Case Western University, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 25, 2019
Drug Discovery & Development
NOV 25, 2019
Darobactin: Promising New Drug to Combat Antibiotic Resistance
Every year, around 700,000 people are estimated to die from drug-resistant infections thanks to our overuse of antibiotics both in agriculture and medicine...
DEC 17, 2019
Cell & Molecular Biology
DEC 17, 2019
A New Tool for Assessing the Impact of Drugs on Single Cells
When scientists assess the impact of a treatment like a drug on cells, they usually generally rely on large populations of cells to find general trends....
JAN 08, 2020
Cell & Molecular Biology
JAN 08, 2020
In a First, Scientists Generate Early Human Immune Cells in the Lab
Now we know more about the early stages of the human immune system....
JAN 09, 2020
Cell & Molecular Biology
JAN 09, 2020
Acidic Stomach Environment May Worsen Microbial Pathogenicity
The acids of the stomach may not pose a problem for bad bugs....
JAN 26, 2020
Cell & Molecular Biology
JAN 26, 2020
Using Stem Cells to Treat Chronic Pain
Scientists have used a mouse model to show that human stem cells could be used to engineer neurons that stop pain....
FEB 03, 2020
Cell & Molecular Biology
FEB 03, 2020
Brain Organoids May Not be Living Up to the Hype
Cells can be grown in special ways to create three-dimensional, miniature models of organs. But how good are they?...
Loading Comments...