FEB 03, 2018 03:02 PM PST

A Light Switch for Turning Proteins On & Off

WRITTEN BY: Carmen Leitch

A new tool invented by researchers at UC San Francisco enables the precise manipulation of the activity of proteins in cells. The technique uses a blue light to make proteins split apart, but in a way that is reversible. This work could have a tremendous number of applications; scientists study many different cellular processes and diseases by altering protein levels. There has been considerable interest that has led to myriad ways to tinker with cellular proteins, but there are hurdles to such work. 

“A challenge of the post-genomic era is to figure out what specific proteins do in cells, and when and where they do it, something that cannot be achieved by genetic knockouts alone," explained Torsten Wittmann, PhD, a professor in the Department of Cell and Tissue Biology in UCSF’s School of Dentistry. “Here we show a new method to inactivate specific proteins acutely, locally and reversibly inside living cells, which should be able to address many of these questions."

Reporting in Nature Cell Biology, the scientists used their invention to show that the movements of cancer cells are dependent on the architecture of the cell, its microtubules. They enable cells to shift in the direction of cell migration. This work could not only enrich our understanding of cell movement but also aid in the creation of therapies for cancer.

Optogenetics is a burgeoning field that uses light to control live cells. The photo-inactivation used for this study can make proteins light-sensitive in any cell; the function of proteins can be quickly turned off and on in specific parts of the cell. 

The researchers took advantage of two proteins called LOV2 and Zdk1, they bind to each other in the dark but detach when they’re exposed to blue light. The investigators used genetic engineering to introduce the LOV2 and Zdk1 proteins into a larger protein, which then made that larger protein come apart when exposed to blue light. 

Image credit: Pixabay

Postdoctoral researcher and first author Jeffrey van Haren, Ph.D., used the tool to assess how microtubules influence the ability of a cell to move. LOV2 and Zdk1 were inserted into the EB1 protein, which regulates the growth of microtubules. When a blue light was shone on genetically manipulated cells, microtubule growth was decreased, and when the light was off, it returned to normal. 

It had been thought that the actin cytoskeleton was the primary player in cell movement, said Whitman. This work indicates that the direction of a cell can be altered by halting the growth of microtubules toward the leading edge of the cell. Impressively, the investigators also trapped a cancer cell in a cage of light.

“We believe this strategy will be useful to be able to generate many other light-inactivated proteins,” Wittmann said. “A lot of cellular proteins are modular, with large folded domains tethered together by unstructured linkers. By inserting a photo-inactivation element in place of these linkers, we should be able to make any such protein sensitive to light."

This work could dramatically reduce the amount of time it takes to lower and raise protein levels. “Photo-inactivation lets us turn proteins off and back on in living cells in real time, and do so with much more spatial accuracy than has been possible before,” Wittmann noted. "I hope this becomes a key tool for anyone interested in understanding how these tiny molecular machines make every cell in our bodies tick."

 

Sources: UCSF, Nature Cell Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 06, 2018
Cell & Molecular Biology
NOV 06, 2018
Mapping the Brain
The brain still holds many mysteries, but scientists are finding ways to learn more about how it works....
NOV 19, 2018
Genetics & Genomics
NOV 19, 2018
Revealing an Unexpected Role for RNA in DNA Repair
When both strands of DNA break, it must be repaired or the cell will die....
NOV 20, 2018
Cardiology
NOV 20, 2018
What Makes Some Fats Bad
You may recall hearing at some point that there are “good fats“ and “bad fats.“ What does that really mean? But what makes one type...
NOV 21, 2018
Immunology
NOV 21, 2018
HIV Persisting How?
A team of researchers have identified an HIV reservoir...
DEC 09, 2018
Videos
DEC 09, 2018
Retina Organoids Help Researchers Learn More About Color Vision
Researchers are growing mini-retinas to learn more about color vision, and why it's dysfunctional in some people....
DEC 12, 2018
Cell & Molecular Biology
DEC 12, 2018
Study Shows Why Diets Rich in Red Meat Increase Heart Disease Risk
For decades, we've known that red meat is a risk factor for heart disease. Now, researchers at the Cleveland Clinic know why....
Loading Comments...