FEB 24, 2018 12:50 PM PST

Tumors Eradicated by Immune-stimulating Agents

WRITTEN BY: Carmen Leitch

With mice as a model, researchers at Stanford discovered that by injecting two molecules that stimulate the immune system, solid tumors and any trace of cancer could be eliminated. This T cell activating therapy could work for many types of cancer. Because only small amounts are needed in a targeted approach, the researchers believe this could be an affordable treatment that doesn’t cause as many side effects as other therapeutics.

A scanning electron micrograph of a healthy human T cell. / Credit: NIH

“When we use these two agents together, we see the elimination of tumors all over the body,” noted Ronald Levy, MD, professor of oncology. He was senior author of a report in Science Translational Medicine summarizing the findings. “This approach bypasses the need to identify tumor-specific immune targets and doesn’t require wholesale activation of the immune system or customization of a patient’s immune cells.”

One drug is already approved for human use, and the other has undergone testing for human patients in a few unrelated clinical trials. This January, a new clinical trial was launched to assess this treatment in lymphoma patients.

There has been considerable interest in developing drugs that use the immune system to fight cancer. Some approaches rely on bodywide stimulation; others remove a patient’s immune cells and genetically alter them to combat cancer before reinjecting them. While there have been other attempts as well, none have been entirely successful. Some are very expensive or laborious; others cause serious side effects. 

“All of these immunotherapy advances are changing medical practice,” Levy said. “Our approach uses a one-time application of very small amounts of two agents to stimulate the immune cells only within the tumor itself. In the mice, we saw amazing, bodywide effects, including the elimination of tumors all over the animal.”

Typically, cells of the immune system that should recognize foreign invaders, T cells, will attack cancer cells at first, but as cancerous tumors grow, they are often able to suppress T cell activity.

Levy’s team aimed to stimulate T cells that target cancer by exposing them to minuscule amounts of two agents at the site of tumors. One is a short snippet of DNA called an oligonucleotide; it boosts the expression of a T cell receptor. The other molecule is an antibody that binds to that receptor. Together, the antibody and receptor team up to activate the T cells. Only T cells that have gotten into the tumor are activated since the agents are applied to the tumor directly. Those T cells can recognize a specific cancer, and some leave the site of the tumor. They then migrate throughout the body and destroy other, similar tumors.

This was a remarkably effective approach that worked in transplanted lymphoma tumors, with both the original injected tumor getting destroyed as well as a second, uninjected tumor. The therapy also worked on genetically engineered mice that develop breast cancer. In the cases of cancers that grew back after the first treatment, a second treatment removed it again.

After testing mice that had been transplanted to receive lymphoma tumors and colon cancer, the treatment eliminated the lymphoma tumors, but not the colon cancer.

“This is a very targeted approach,” Levy explained. “Only the tumor that shares the protein targets displayed by the treated site is affected. We’re attacking specific targets without having to identify exactly what proteins the T cells are recognizing.”

If the current trial, which will have around fifteen lymphoma patients, is successful, the researchers want to find out if it works with other kinds of cancer.

“I don’t think there’s a limit to the type of tumor we could potentially treat, as long as it has been infiltrated by the immune system,” Levy said.


Sources: Stanford University, Science Translational Medicine

About the Author
Bachelor's (BA/BS/Other)
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 29, 2022
Cell & Molecular Biology
How a Master Regulator May be Working to Protect Cancer
How a Master Regulator May be Working to Protect Cancer
Scientists have now discovered yet another way that MYC proteins can promote cancer. MYC has been called a master regula ...
DEC 01, 2022
Neuroscience
Social Trauma Blocks Social Reward Neurons, Triggering Avoidance
Social Trauma Blocks Social Reward Neurons, Triggering Avoidance
Social trauma impairs social reward function in the brain, and thus triggers social avoidance in mice. The corresponding ...
DEC 14, 2022
Cell & Molecular Biology
Synthetic Cellular 'Glue' Could Heal Wounds & Regenerate Tissue
Synthetic Cellular 'Glue' Could Heal Wounds & Regenerate Tissue
Humans beings carry a lot of fluid in our bodies, and we need strong connections between structures and cells to hold ev ...
JAN 04, 2023
Neuroscience
Two New Ways to Detect Alzheimer's From Blood Samples
Two New Ways to Detect Alzheimer's From Blood Samples
Right now, there are no blood tests that can reliably diagnose Alzheimer's disease on their own. Most people only get di ...
JAN 19, 2023
Cell & Molecular Biology
Revealing the Molecules Underlying Metastasis
Revealing the Molecules Underlying Metastasis
Cancer is at its deadliest when it metastasizes - when cancer cells break away from a tumor and migrate to other tissues ...
JAN 30, 2023
Cannabis Sciences
What We Have to Gain: New Research on the Molecules of THC
What We Have to Gain: New Research on the Molecules of THC
Cannabis has a longstanding history and notoriety for its multi-faceted economic and medicinal uses. Hemp has historical ...
Loading Comments...