MAY 24, 2018 05:05 PM PDT
Scientists Transfer a Memory From one Snail to Another
WRITTEN BY: Carmen Leitch
2 6 290

A memory was transferred from one animal to another, scientists at UCLA have reported in the journal eNeuro. To do so, the researchers used RNA taken from a marine snail and injected it into another. RNA transmits information from the genetic code to the cell, and while a primary function is to create protein from genes, RNA can also send messages. This work shows that it plays a role in the physiology of memory, and could one day help reduce trauma or restore lost information.

"I think in the not-too-distant future, we could potentially use RNA to ameliorate the effects of Alzheimer's disease or post-traumatic stress disorder," explained the senior author of the work, David Glanzman,  a UCLA professor of integrative biology and physiology, and neurobiology. 

For this work, the researchers used Aplysia, a type of marine snail. The snails received a tail shock every twenty minutes until they’d had five. They got another five a day later. The withdrawal reflex, which is displayed when the snail is threatened, was enhanced by the shocks. When snails are not shocked, a tap results in a defensive reflex that lasts one second. Shocked snails, however, contracted defensively for fifty seconds when the researchers tapped them; that is a kind of learning that is referred to as sensitization. 

RNA was then harvested from the various marine snails’ nervous systems. Seven marine snails that had not gotten shocks received RNA from the shocked or sensitized, marine snails. Seven other un-shocked marine snails got RNA from snails that had also not been exposed to the shock treatment. 

The scientists found that the marine snails that received RNA from sensitized snails then behaved as if they had also been shocked. When tapped, their defensive reflex lasted around 40 seconds. There was no such display in the snails that received RNA from snails that were not sensitized. "It's as though we transferred the memory," noted Glanzman.

This is David Glanzman holding a marine snail. / Credit: Christelle Snow/UCLA

The researchers also looked at cells in a dish to study how such transplants affected neurons in culture. It has been suggested that memories are stored where neurons connect, at the synapses. Glanzman thinks that they’re actually stored in the nucleus of neurons. The team found that the sensitization caused sensory neurons to become more excitable. When RNA was transferred as it was in the snails, neurons that were from animals that were not shocked became excitable after they received RNA from sensitized animals. That transferable excitability seen in the dish lends credence to Glanzman’s hypothesis.

"If memories were stored at synapses, there is no way our experiment would have worked," said Glanzman.

Glanzman added that marine snails are great models for researching memory. The cell biology of this organism has been studied and characterized extensively, and there are very similar processes at work in human and snail neurons; the snail is just a much simpler organism with far fewer neurons.

Glanzman plans to continue his work and is pursuing research to restore memories in Alzheimer’s patients. He also wants to find out more about the RNA that is transferring memories.


Sources: Science Daily via UCLA, eNeuro

About the Author
  • Experienced research scientist and technical expert...
You May Also Like
APR 30, 2018
Cell & Molecular Biology
APR 30, 2018
A New Mechanism of Drug Resistance is Revealed
One way to combat the rise of antibiotic resistance is to find out how bacteria evade the effects of current drugs, to improve drug design.
MAY 14, 2018
Cell & Molecular Biology
MAY 14, 2018
Butterfly Wings Inspire Medical Implant Material
Researchers found nanostructures on butterfly wings with a unique optical characteristic - they are almost completely transparent.
MAY 21, 2018
Cell & Molecular Biology
MAY 21, 2018
A Brain Map Made by Crowdsourcing
Princeton researchers turned to gamers when they needed to make sense of a huge amount of data.
MAY 29, 2018
Cancer
MAY 29, 2018
Potential New Treatment to Block the Mechanism for Cancer Metastasis
A new treatment developed by collaborators, called metarrestin, blocks metastatic cancer cells' ability to make proteins and spread through a mechanism in the perinucleolar compartment.
JUN 05, 2018
Cancer
JUN 05, 2018
Precision vs. Personalized Medicine Part II: Personalized Approach
So often the phrases "Precision Medicine" and "Personalized Medicine" are used interchangeably. Are they really synonyms? Part II looks at Personalized Medicine
JUN 19, 2018
Microbiology
JUN 19, 2018
The Impact of Antibiotics on Gut Microbes
Antibiotics had a dramatic impact on the microbes of the GI tract in a research model.
Loading Comments...