DEC 09, 2018 6:01 PM PST

Measurement of Time, Redefined

WRITTEN BY: Daniel Duan

Once defined by the predictable swing of a finely-tuned pendulum in the classic era, the most precise clock these days--the atomic clocks--rely on the electron transition frequency to keep track of time.

In the past a couple of months, two new atomic clocks smashed the history of timekeeping yet again. Both designs involve the NIST, or National Institute of Standards and Technology, where the first atomic clock was built in 1948. The proof-of-concept device was less accurate than quartz clocks at the time. However, it inspired the construction of the first modern day master clock (which uses the atomic transition of cesium-133 to keep track of time) in 1955 at UK's National Physical Laboratory.

What are atomic clocks so accurate? They take advantage of the highly consistent resonance frequency of atom. Take cesium-133 for example, all of the same atoms oscillate at exact 9,192,631,770 cycles per second, without variation among them. The remarkably consistent frequency cannot influenced by any environmental factors, unlike quartz crystals which changes their oscillating frequency at different temperatures.

In a recent publication in the journal Nature physicists at NIST described an optical atomic clock that traps a thousand ytterbium atoms using grids of laser beams. It matches the natural frequency with such a small possible error that it would take almost 14 billion years (our universe has existed for less than that) to lose a second. The ytterbium atomic clock set three new world records in "systematic uncertainty, stability, and reproducibility".

In an article published in the journal Science scientists from Joint Institute for Laboratory Astrophysics (JILA), cohosted by NIST, reported another new design: they turned strontium atoms into quantum gas and packed them into a tiny three-dimensional cube at 1,000 times the density of the previous generation of atomic clocks (which are called one-dimensional clock in comparison).

In older atomic clocks each atom existed as a separate quantum particle with their own energy state. JILA's device created a so-called “quantum many-body system,” which arranges the atoms in the way that the collective exists as a whole in the lowest overall energy state. Compared to the group’s previous 1-D clocks, the new 3-D clock can reach the same level of precision more than 20 times faster. Their data show the 3-D clock achieved a precision of just 3.5 parts error in 10 quintillions (10E-19) in about 2 hours, fastest among all atomic clocks.

The science behind time-keeping has come a long way, with the new atomic clock design bringing the accuracy, precision, and stability of time measurement up to whole new levels. Besides tracking time, scientists also hope that one day these highly advanced clocks can help us explore ripples in the spacetime fabrics, or even hunt for the elusive dark matter.

Source: Seeker/ZMEScience

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
JAN 21, 2021
Chemistry & Physics
Making the making of ammonia "green"
JAN 21, 2021
Making the making of ammonia "green"
For decades, economists and chemists alike have been dreaming of a hydrogen economy, where hydrogen fuels our global pow ...
FEB 19, 2021
Chemistry & Physics
Ultraviolet TV for animals - and what it can teach us
FEB 19, 2021
Ultraviolet TV for animals - and what it can teach us
Does your dog like watching TV with you? Chances are probably not, because dogs’ eyes see light much faster than h ...
MAR 25, 2021
Clinical & Molecular DX
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
MAR 25, 2021
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
Doppler radars are used by cops to catch speeding drivers, in spacecraft navigation, and for forecasting the weather. No ...
MAR 23, 2021
Chemistry & Physics
Honeybees send chemical messages by "twerking"
MAR 23, 2021
Honeybees send chemical messages by "twerking"
Remember playing telephone as a kid (or an adult)? It always brings a laugh when you try to pass a word or sentence alon ...
APR 13, 2021
Clinical & Molecular DX
A Color-Changing "Invisible Tattoo" for Long-Term Health Monitoring
APR 13, 2021
A Color-Changing "Invisible Tattoo" for Long-Term Health Monitoring
German researchers have developed an innovative method for continuously tracking and monitoring biomarkers and drugs cir ...
APR 13, 2021
Chemistry & Physics
Think again: does the presence of oxygen really mean life on other planets?
APR 13, 2021
Think again: does the presence of oxygen really mean life on other planets?
Does the presence of oxygen mean the existence of life? That’s a question that scientists have been debating over ...
Loading Comments...