JAN 23, 2019 11:01 AM PST

"Jumping Crystals" the Microscopic Acrobats

WRITTEN BY: Daniel Duan

Phase (form) transition within the "Jumping Crystals" (Naumov/NYUAD)
 
Often compared to the kernels popping and bouncing under the heat conveyed through microwave,  the thermosalient ("thermo" relates to heat
whereas "salient" means pointing outward of an angle)  effect, describes a seemingly wicked microscopic phenomenon. After absorbing photonic energy, certain chemical crystals exhibit forceful tumbling and jumping motion across so what a great distance, hence the nickname "Jumping Crystals".

First discovered in the 1980s, this little-known phenomenon has been gaining traction in the last decade, thanks to Dr. Panče Naumov who's now a chemistry professor at the New York University Abu Dhabi. Naumov has been dedicating a lot of effort to understanding the thermosalient effect since he was a postdoctoral researcher.

In 2010 when working with a derivative of green fluorescence protein (GFP) chromophore, he observed an unconventional photomechanical response: a small crystal of the fluorescent compound bent to over 90 degrees when exposed to deemed light.

In a later work, Naumov and coworkers used the crystals of the cobalt coordination compound in their study of the photo-induced thermosalient effect. In response to ultraviolet light stimulus, the crystals were found capable of leaping over distances that are over a hundred times of their own size, due to the buildup of energy within their structures. They proposed that the "jump" was so strong that it could be utilized for actuation purpose, in another word, to operate machines.

In 2017, in collaboration with scientists at the National Chemical Laboratory in India,  Naumov and colleagues probed the thermosalient behavior of naphthalenes. Their X-ray data showed that heat can trigger the form transition of the crystals of naphthalene, which cause the "arms" of the molecule to open and close, and the entire crystal to jump or disintegrate.

As more results of the thermosalient effect research accumulate, scientists start to gain a better understanding of the chemical mechanisms that underpin the "jumping crystals". Even though it is still difficult to predict which compound can form jumping crystals and which cannot, Naumov and many others hope that one day they can utilize the acrobatic features of the jumping crystals to make switch fluid valves or power artificial muscles.

Crystals jump and explode in ultraviolet light (NewScientist)

Source: C&EN/New Scientist

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
AUG 28, 2020
Chemistry & Physics
Interacting Time Crystals and the Future of Time Keeping
AUG 28, 2020
Interacting Time Crystals and the Future of Time Keeping
Time crystals, also known as the space-time crystals, is a newly discovered state of matter that demonstrates distinct s ...
AUG 31, 2020
Cell & Molecular Biology
Using Green Light to Create Molecular Bonds
AUG 31, 2020
Using Green Light to Create Molecular Bonds
In a first, researchers have used acidity and alkalinity - pH as a switch that can turn a green light-activated bonding ...
SEP 06, 2020
Chemistry & Physics
The fluid dynamics of pelagic snails' movement
SEP 06, 2020
The fluid dynamics of pelagic snails' movement
Warm water pelagic snails don’t get much attention, but they certainly should. The snails move between ocean surfa ...
OCT 17, 2020
Chemistry & Physics
Improving carbon capture technologies using membranes
OCT 17, 2020
Improving carbon capture technologies using membranes
Researchers from the International Institute for Carbo-Neutral Energy Research (I2CNER), Kyushu University and NanoMembr ...
OCT 25, 2020
Plants & Animals
Flexible Film Can Change Color Like Chameleon Skin
OCT 25, 2020
Flexible Film Can Change Color Like Chameleon Skin
Chameleons are well known for their ability to change the color of their skin to blend in with their surroundings, send ...
OCT 28, 2020
Chemistry & Physics
Paleontologists use scanning electron microscopy to analyze dinosaur egg fossils
OCT 28, 2020
Paleontologists use scanning electron microscopy to analyze dinosaur egg fossils
Scientists report using scanning electron microscopy to examine the surfaces of dinosaur egg fossils in order to determi ...
Loading Comments...