MAR 12, 2019 6:00 AM PDT

Algae Biofuel--What Happened After the Hype?

WRITTEN BY: Daniel Duan

(Wikimedia Common)

During the first decade of the 21st century, the world saw a rapid surge of research and development activities surrounding algae biofuel. The concept, which combines biological carbon capture and accelerated fossil fuel creation in its essence, has the environment-friendly appears.and advantages over the production of fossil fuel and energy source from other types of biomass.

After dozens of organizations spending hundreds of millions of dollars-worth investment, a significant portion of which came from Exxon Mobile and the Department of Energy, the bubble burst as no one managed to achieve a commercial scale process. The idea of extracting fuel oil from algae was since considered neither commercially viable nor environmentally responsible.

The boom started when algae were discovered to be much more efficient in capturing carbon and turn them into biofuel, as compared to terrestrial plants such as palms and corns. Algae do not require good quality land, so using algae as a source for biodiesel can alleviate the competition with food crops.

The genetically diverse, lipid-rich watery plant is not picky about water either: wastewater from farming, contaminated with fertilizers can be used as its primary source of water and nutrients.

Since many algae species are excellent bio-fixers, meaning the production process of algae biofuel can be a carbon-negative process, even though about a good percentage of the carbon will be released back to the atmosphere during fuel consumption. But the byproducts and scrap from algae can be easily buried as composting.

Later on, as more R&D was carried out, it turns out that growing algae in the industrial scale would require about the same footage of land if not ocean as other traditional fuel crops. It was calculated that an algae pond would need to suck around 4g of carbon from the atmosphere and transformed that into biomass per square meter (or 11 square feet) every day, in order to sustain fuel production and extraction.

From the biochemistry point of view, the amount of fertilizer that the growth of algae would need in an industrial setting is also astounding and may result in unhealthy competition with the need for food crop farming.

Some of the biofuel startups survived the burst, but they all switched gears to focus turning algae into other high-value products such as cooking oil, dietary supplement, and food coloring products. Meanwhile, algae biofuels research and development is still alive, with a smaller amount of funding dedicated to plausibly breakthroughs, in both biology and engineering.

For instance, chemical engineers from the University of Utah reported a new, energy-efficient method to extract lipids from the watery plant: they developed a new mixing reactor in which jets of the extraction solvent run against jets of algae, creating turbulence that "suck out" liquid from algae with ease.

As many are hopeful that more innovation will put us closer to turning algae into a viable, cost-effective alternative fuel, it is important to bear in mind that any breakthrough in industrial technology takes time, money, and careful, lengthy R&D.
 

Energy 101 | Algae-to-Fuels (DOE)

Source: Forbes

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
MAY 27, 2021
Neuroscience
Research Less Likely to Be True is Cited More
MAY 27, 2021
Research Less Likely to Be True is Cited More
Researchers from the University of California San Diego have found that non-replicable data is cited 153 times more ofte ...
JUN 29, 2021
Chemistry & Physics
Education In The Post-Covid World: Alternative Ways to Learn Chemistry & Physics
JUN 29, 2021
Education In The Post-Covid World: Alternative Ways to Learn Chemistry & Physics
Article Summary As the COVID-19 pandemic dies down, its effects will echo throughout the STEM field. Physics and chemist ...
JUN 12, 2021
Chemistry & Physics
The next bioplastic: plant-based spider silk
JUN 12, 2021
The next bioplastic: plant-based spider silk
A team of researchers from the University of Cambridge has designed and developed a new plastic alternative made from pl ...
JUN 16, 2021
Chemistry & Physics
Turning generic polymers luminescent with sheer force
JUN 16, 2021
Turning generic polymers luminescent with sheer force
A study recently published in the journal Angewandte Chemie International Edition debuts a new method that converts ...
JUN 20, 2021
Chemistry & Physics
Illuminating the dark side of e-waste recycling
JUN 20, 2021
Illuminating the dark side of e-waste recycling
A new study published in the journal Resources, Conservation, and Recycling evaluates the shortcomings of electronics re ...
JUL 23, 2021
Earth & The Environment
How Much for a Healthy Ecosystem? Value & Policy in Forest Ecosystems
JUL 23, 2021
How Much for a Healthy Ecosystem? Value & Policy in Forest Ecosystems
Whether you know it or not, healthy ecosystems are an essential part of your life and many of the services you use daily ...
Loading Comments...