MAY 24, 2019 7:00 AM PDT

The Battery of the Future Can Power a City Block

WRITTEN BY: Daniel Duan

Lithium-ion batteries are playing an indispensable role in our everyday life, powering up everything from a cellphone to a pickup truck. But for cities of the future, we would need something more powerful, cost-effective and scalable to take care of its energy need, as the use of renewable electricity is becoming mainstream.

First developed by NASA for deep-space missions,  redox-flow batteries can take on the job of storing electricity generated by solar panels, wind turbines,  and even hydroelectric dams during their peak operating hours. As the supply for these source winds down during the off-peak windows, these high capacity batteries can kick in and power the grids. 

Redox-flow batteries that use vanadium ions (V2+ and V3+) as charge carriers have many advantages. Unlike lithium, vanadium is much more abundant and less expensive to mine. Vanadium cells can last longer, some twenty years or even more after repeated usage. They retain their charging capacity over a long period of time and can be scaled up with ease.    

Taking the lead in the game, China opened its first vanadium redox-flow battery factory in 2017. The manufacturing plant currently produces 300 megawatts’ worth of batteries annually. By next year, it will ramp up to producing 3 gigawatts, a capacity that matches the per-second output of a large natural gas power station. 

Source: Seeker via Youtube

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
APR 12, 2020
Chemistry & Physics
APR 12, 2020
Where we should turn our focus for ammonia emissions control
When you think of air pollution, you might not immediately think of ammonia. But in fact, when ammonia reacts with sulfu ...
MAY 12, 2020
Chemistry & Physics
MAY 12, 2020
Improvised Face Covering: Finding Alternatives to Standard Masks During a Pandemic
On April 3rd, the US Centers for Disease Control and Prevention announced that they recommend members of the general pub ...
MAY 18, 2020
Chemistry & Physics
MAY 18, 2020
Understanding the movement of Martian mars
New research led by scientists from the Institute of Geophysics at the Czech Academy of Sciences describes the latest fi ...
MAY 24, 2020
Chemistry & Physics
MAY 24, 2020
The debate on using oilfield produced water for crop irrigation continues
In an attempt to determine whether it is safe to use oilfield produced water for crop irrigation, a team of researchers ...
JUN 15, 2020
Chemistry & Physics
JUN 15, 2020
3D-printed bio-ink prints tissues inside the body
Imagine this: 3D-printed body parts that are printed directly in the body. Sounds far out, right? But new research from ...
JUN 24, 2020
Chemistry & Physics
JUN 24, 2020
Acoustic levitator allows for touchless chemical experiments
Have you ever heard of an acoustic levitator? Acoustic levitation uses acoustic radiation pressure from high-intensity s ...
Loading Comments...