MAY 24, 2019 7:00 AM PDT

The Battery of the Future Can Power a City Block

WRITTEN BY: Daniel Duan

Lithium-ion batteries are playing an indispensable role in our everyday life, powering up everything from a cellphone to a pickup truck. But for cities of the future, we would need something more powerful, cost-effective and scalable to take care of its energy need, as the use of renewable electricity is becoming mainstream.

First developed by NASA for deep-space missions,  redox-flow batteries can take on the job of storing electricity generated by solar panels, wind turbines,  and even hydroelectric dams during their peak operating hours. As the supply for these source winds down during the off-peak windows, these high capacity batteries can kick in and power the grids. 

Redox-flow batteries that use vanadium ions (V2+ and V3+) as charge carriers have many advantages. Unlike lithium, vanadium is much more abundant and less expensive to mine. Vanadium cells can last longer, some twenty years or even more after repeated usage. They retain their charging capacity over a long period of time and can be scaled up with ease.    

Taking the lead in the game, China opened its first vanadium redox-flow battery factory in 2017. The manufacturing plant currently produces 300 megawatts’ worth of batteries annually. By next year, it will ramp up to producing 3 gigawatts, a capacity that matches the per-second output of a large natural gas power station. 

Source: Seeker via Youtube

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
DEC 22, 2020
Chemistry & Physics
Improving transmission electron microscopy at nanoscale
DEC 22, 2020
Improving transmission electron microscopy at nanoscale
New research published in the journal Matter describes the development of a new kind of microscopy – this time at ...
JAN 10, 2021
Chemistry & Physics
Documenting biological magnetoreception in living cells
JAN 10, 2021
Documenting biological magnetoreception in living cells
New research published recently in the Proceedings of the National Academy of Sciences from a team of scientists fr ...
FEB 19, 2021
Chemistry & Physics
Ultraviolet TV for animals - and what it can teach us
FEB 19, 2021
Ultraviolet TV for animals - and what it can teach us
Does your dog like watching TV with you? Chances are probably not, because dogs’ eyes see light much faster than h ...
MAR 01, 2021
Chemistry & Physics
Enhancing photovoltaic efficiency with polymers
MAR 01, 2021
Enhancing photovoltaic efficiency with polymers
New research published in Advanced Functional Materials highlights the most recent advancement in photovoltaic technolog ...
MAR 16, 2021
Chemistry & Physics
Is your air purifier making your air more polluted?
MAR 16, 2021
Is your air purifier making your air more polluted?
A study from a collaboration of researchers at Illinois Tech, Portland State University, and Colorado State University h ...
APR 18, 2021
Chemistry & Physics
Making white paint even whiter could cut summertime energy costs
APR 18, 2021
Making white paint even whiter could cut summertime energy costs
Researchers from Purdue University have developed an ultra-white paint that can reflect solar heat and therefore decreas ...
Loading Comments...