NOV 22, 2019 12:00 PM PST

Scientists Observed the Root Cause of Lithium Batteries Failures in Real Time

WRITTEN BY: Daniel Duan

(Pixabay/Wikimedia Common)

Lithium batteries have high energy storage capacity, but sometimes they have unexpected failures and can even cause a fire.

A team of scientists at the Department of Energy's Pacific Northwest National Laboratory (PNNL) demonstrated for the first time how dendrites and whiskers — destructive, crystalline structures formed by lithium ions come into existence inside a battery.

It should be noted that lithium metal batteries and lithium-ion (Li-ion) batteries, though share similarities, aren't the same thing. The former are non-rechargeable cells that use lithium metal as the anode. The latter are rechargeable and rely on the flow of lithium ions between the anode and the cathode to store and discharge electricity. But they do not have lithium in their anodes.

Lithium metal batteries are commonly used in devices such as watches, digital cameras, computer boards, and calculators. Having the lowest standard electrochemical redox potential and high energy density, lithium metal can theoretically be the perfect anode material for rechargeable batteries. 

However, scientists have troubles incorporating lithium metal into rechargeable batteries because the deposit of lithium ions, which forms dendrites and whiskers, can poison the electrolyte, shorten battery lifespan, and cause short-circuit. And no one has sufficient evidence on how dendrites and whiskers are formed.

To get to the bottom of this, researchers at PNNL coupled an atomic force microscope (AFM) with an environmental transmission electron microscope (ETEM), in order to zero in on the growth of Li whiskers. 

Watching Whiskers Grow inside Lithium Batteries (PNNL)

Their imagery results showed that Li ions clump together to forming a single particle in the beginning; as time went by, more and more atoms latch onto the crystalline, forming a more significant structure over time. What's more, the growth had no preferential directions. 

To their surprise, they discovered that the solid-electrolyte interphase, a film where the solid lithium surface of the anode meets the liquid electrolyte, dictates the morphology of the lithium deposition. They also tried to modify electrolyte chemistry to prevent the growth of the structures.

By revealing how the Li dendrites and whiskers grow, the PNNL team hopes their research will inspire more studies to find ways to prevent or mitigate the deposit of Li ions.

This study is published in the journal Nature Nanotechnology.

Source: Physics World

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
AUG 18, 2020
Microbiology
The Science of Pesto
AUG 18, 2020
The Science of Pesto
  The word pesto comes from the Genovese word pestâ (pestare in Italian) which means “to pound” o ...
AUG 21, 2020
Chemistry & Physics
Biorubber glue reduces surgery time and improves pain relief
AUG 21, 2020
Biorubber glue reduces surgery time and improves pain relief
A study published recently in Biomaterials showcases a new development in biomaterials that could forever change th ...
SEP 06, 2020
Chemistry & Physics
The fluid dynamics of pelagic snails' movement
SEP 06, 2020
The fluid dynamics of pelagic snails' movement
Warm water pelagic snails don’t get much attention, but they certainly should. The snails move between ocean surfa ...
SEP 22, 2020
Chemistry & Physics
New photodectector can see the full light spectrum
SEP 22, 2020
New photodectector can see the full light spectrum
New research from a team at RMIT University highlights the development of a hyper-efficient broadband photodetector that ...
NOV 20, 2020
Chemistry & Physics
The Passing of a Neutrino Hunting Pioneer
NOV 20, 2020
The Passing of a Neutrino Hunting Pioneer
Masatoshi Koshiba, a revered Japanese physicist known for his groundbreaking work on cosmic neutrino detection, passed a ...
NOV 24, 2020
Chemistry & Physics
Want to Keep Calm? Tap Water Might Help
NOV 24, 2020
Want to Keep Calm? Tap Water Might Help
The ongoing worldwide pandemic places the mental health of many communities on red alert. But there may be a remedy to e ...
Loading Comments...