DEC 20, 2013 12:00 AM PST

Modeling of Cellulose Nanocrystals Suggests Amazing Strength

WRITTEN BY: Jen Ellis
Crystalline cellulose structures are known to have great strength compared to their weight, but quantifying this on the nanostructural level has been difficult. Researchers at Purdue University, the GM R&D Center, and the Forest Products Lab at the US Forest Service, used quantum mechanics principles to predict the strength of nanocrystalline cellulose, and concluded that they have a stiffness value in the range of steel. This work was published in the recent issue of Cellulose.

With a nanocrystalline structure in the range of 500 nm (nanometers) in length and widths around 3 nm, their dimensions are similar to carbon nanotubes that are currently used as strength-reinforcing additives in a wide variety of composite applications (everything from airplane and automotive components to golf clubs and tennis rackets). However, carbon nanotubes are relatively expensive to produce; whereas nanocrystalline cellulose could theoretically be recovered out of waste streams from existing industries (such as paper mills or biofuel conversion facilities).

If the strength of nanocrystalline cellulose can be confirmed and their mechanical properties fully characterized, these materials could offer a great alternative as additives to strengthen composites. By definition, they represent a "greener" process-made from renewable materials and potentially from waste streams-and depending on the technology required to extract the nanocrystalline structures, potentially a carbon-neutral product.

The research team was able to model the atomic structure of cellulose with high precision and determined that nanocrystalline cellulose has a Young's modulus value (stiffness) near 206 GPa (gigapascals). For reference, concrete is in the area of 30 GPa, ASTM-A36 steel is approximately 200 GPa, and individual carbon nanotubes can vary from near 100 GPa to 1500 GPa depending on their structure.

Nanocrystalline cellulose could be an economical, green alternative for strengthening additives-and depending on how the structure can be altered and chemically functionalized; it may have a wider variety of uses. Anything from drug delivery vehicles to purification filters to electronics industry coatings is a potential use, if the chemists in that industry can modify the structure for their needs without reducing its inherent strength.

There are other obstacles to consider, aside from convincing industries to invest in recovery processes. Cellulose's biodegradability may be an asset in some applications and an obstacle in others. If the material is being processed as nano-scale particles, it will undergo EPA and health hazard scrutiny just like other nanomaterials. Finally, some form of bulk measurement will eventually be necessary. Some carbon nanotubes in the same predicted stiffness range as individual nanotubes were found to have orders-of-magnitude lower stiffness in bulk measurements, making them useful for some industries and less so for others.

The researchers at Purdue are planning to apply the same research to alpha-chitin, a material abundant in the shells of crustaceans and insects. The mechanical properties are thought to be similar to cellulose, and alpha-chitin is a waste product of the seafood industry, so it could represent another renewable tool for composite designers and materials engineers to use.

This work represents a milestone toward the possibility of greener, renewable, economically viable materials for high-strength, lightweight applications. It's possible that your car or golf clubs will contain some of these materials within a decade or two.
About the Author
You May Also Like
MAR 23, 2020
Space & Astronomy
MAR 23, 2020
Here's Why the Planets Orbit the Sun How They Do
All the solar system’s planets follow nearly the same plane and direction as they orbit the Sun, and this is somet ...
MAR 24, 2020
Space & Astronomy
MAR 24, 2020
How Much Do You Know About the Solar System?
Our solar system is only one out of hundreds of stellar systems residing in the Milky Way galaxy. It’s comprised o ...
MAR 29, 2020
Space & Astronomy
MAR 29, 2020
NASA is Sending This Golden Box to Mars to Make Oxygen
NASA’s Perseverance rover, formerly known as just the Mars 2020 rover, will do quite a bit more than merely drive ...
APR 21, 2020
Space & Astronomy
APR 21, 2020
Did This Interstellar Comet Reveal Vital Clues About its Origins?
Oumuamua received tons of attention from astronomers once it was confirmed to be an interstellar object of unknown origi ...
APR 22, 2020
Drug Discovery & Development
APR 22, 2020
Using Colors To Track The Spread of Drug Particles
Forensic scientists from the National Institute of Standards and Technology (NIST) are relying on color to see the sprea ...
MAY 10, 2020
Space & Astronomy
MAY 10, 2020
Astronomers Discover Earth's Nearest Black Hole Yet
Black holes are a niche part of astronomy that have captivated some of the greatest astronomers and physicists for decad ...
Loading Comments...