MAR 21, 2020 6:33 AM PDT

Making underwater solar cells more efficient

New research published in the journal Joule suggests that wide-band gap semiconductors are more effective in underwater solar cells than traditional narrow-band semiconductors. The research from New York University proposes that wide-band semiconductors could improve the efficiency of underwater solar cells, making them capable of powering autonomous submersible vehicles.

"So far, the general trend has been to use traditional silicon cells, which we show are far from ideal once you go to a significant depth since silicon absorbs a large amount of red and infrared light, which is also absorbed by water -- especially at large depths," says author Jason A. Röhr, a postdoctoral research associate in Prof. André D. Taylor's Transformative Materials and Devices Laboratory at the Tandon School of Engineering at New York University. "With our guidelines, more optimal materials can be developed."

As of now, autonomous submersible vehicles rely on onshore power or inefficient on-board batteries, meaning that they are unequipped for extended travel. The guidelines developed by NYU researchers aims to address these limitations by considering the type of organic and inorganic materials used to produce underwater solar cells. Typical silicon cells that are used on-land are not optimal because they cannot capture sunlight effectively underwater.

"While the sun-harvesting materials would have to change, the general design would not necessarily have to change all that much," says Röhr. "Traditional silicon solar panels, like the ones you can find on your roof, are encapsulated to prohibit damage from the environment. Studies have shown that these panels can be immersed and operated in water for months without sustaining significant damage to the panels. Similar encapsulation methods could be employed for new solar panels made from optimal materials."

Based on their investigations testing solar cell efficiency in various bodies of water around the world differing in turbidity and temperature, the researchers determined that solar cell absorbers function best with an optimum band gap of about 1.8 electronvolts at a depth of two meters and about 2.4 electronvolts at a depth of 50 meters. As Science Daily reports, “These values remained consistent across all water sources studied, suggesting the solar cells could be tailored to specific operating depths rather than water locations.”

Improved efficiency of underwater solar cells could let scientists explore the oceans deeper. Photo: Pixabay

The researchers plan to use their findings to develop not only the guidelines for these underwater solar cells but the optimal materials themselves. "This is where the fun begins!" says Röhr. "We have already investigated unencapsulated organic solar cells that are highly stable in water, but we still need to show that these cells can be made more efficient than traditional cells. Given how capable our colleagues around the world are, we are sure that we will see these new and exciting solar cells on the market in the near future."

Sources: Joule, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
APR 23, 2020
Chemistry & Physics
"Green" Ammonia: Out of Laundry Room, Into Engine Room
APR 23, 2020
"Green" Ammonia: Out of Laundry Room, Into Engine Room
The Paris Agreement outlines a series of measures for our society to adopt so that we can reduce greenhouse gas emission ...
APR 22, 2020
Drug Discovery & Development
Using Colors To Track The Spread of Drug Particles
APR 22, 2020
Using Colors To Track The Spread of Drug Particles
Forensic scientists from the National Institute of Standards and Technology (NIST) are relying on color to see the sprea ...
APR 29, 2020
Chemistry & Physics
New method hospitals can use to produce hydrogen peroxide
APR 29, 2020
New method hospitals can use to produce hydrogen peroxide
In a collaboration between the University of California San Diego, Columbia University, Brookhaven National Laboratory, ...
MAY 20, 2020
Chemistry & Physics
Do cats or dogs better survive venomous snakebites?
MAY 20, 2020
Do cats or dogs better survive venomous snakebites?
Who do you think could better battle off a venomous snakebite - a dog or a cat? New research from the University of Quee ...
JUN 05, 2020
Chemistry & Physics
New Solid-State Battery Bids Farewell to Life-Span Limiting Dendrites
JUN 05, 2020
New Solid-State Battery Bids Farewell to Life-Span Limiting Dendrites
A team of Samsung-sponsored researchers reported in a Nature article an innovative design of solid-state batteries  ...
JUN 13, 2020
Chemistry & Physics
New model monitors landslide triggers
JUN 13, 2020
New model monitors landslide triggers
Research published in the Journal of Geophysical Research - Earth Surface from scientists at Duke University details a n ...
Loading Comments...