APR 17, 2020 6:32 AM PDT

This material adapts to the force exerted upon it

A study published in Advanced Materials recently showcases a self-adapting material capable of changing its rigidity in response to how much force is applied on it. The material was developed by researchers from Johns Hopkins who say that they were inspired by human bone and coral reefs.

"Imagine a bone implant or a bridge that can self-reinforce where a high force is applied without inspection and maintenance. It will allow safer implants and bridges with minimal complication, cost, and downtime," says senior author Sung Hoon Kang, an assistant professor in the Department of Mechanical Engineering, Hopkins Extreme Materials Institute, and Institute for NanoBioTechnology at The Johns Hopkins University.

The key to this material is that it is simple, low-cost and doesn't require extra energy. That hasn’t been the case with similar synthetic materials in the past, which require significant maintenance. Additionally, this material is less stressful on the environment.

The materials that the team developed are capable of converting mechanical forces into electrical charges as scaffolds that can create charges proportional to external force placed on it. Additionally, inspired by the way corals uptake minerals from their environment, they created a system that adds minerals in response to applied stress whereby mineral height was proportional to the square root of stress applied.

Photo: Pixabay

"Our findings can pave the way for a new class of self-regenerating materials that can self-reinforce damaged areas," says Kang, and even prepare for an increased force to prevent future damage. The hope is that these materials will one day be able to be utilized as scaffolds to improve bone regeneration treatments for bone-related disease or fractures, in addition to smart resins for dental treatments. In general, their findings will help provide a wider picture for the mechanisms behind dynamic materials and mineralization.

Sources: Advanced Materials, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
MAR 19, 2020
Chemistry & Physics
MAR 19, 2020
The "Android" Approach to Nuclear Power
Nuclear power plants, whether you like them or not, produce a significant portion of the carbon-free electricity at the ...
APR 28, 2020
Space & Astronomy
APR 28, 2020
NASA's Swift Telescope Measured the Water Loss of This Interstellar Comet
When the interstellar comet 2l/Borisov made its first appearance in our solar system, astronomers were quick to turn the ...
APR 27, 2020
Chemistry & Physics
APR 27, 2020
Electrospray deposition offers better coating method for 3D-printed objects
New research published in the journal ACS Applied Materials & Interfaces details a more efficient mechanism for pain ...
MAY 09, 2020
Chemistry & Physics
MAY 09, 2020
Blood test monitors fat intake
Research published in the Journal of Lipid Research highlights a new blood test that is able to monitor an individual&rs ...
MAY 18, 2020
Chemistry & Physics
MAY 18, 2020
Understanding the movement of Martian mars
New research led by scientists from the Institute of Geophysics at the Czech Academy of Sciences describes the latest fi ...
MAY 25, 2020
Plants & Animals
MAY 25, 2020
Ever Wonder How Some Fish Produce Electricity?
When you hear the term ‘electric fish,’ the first thing that probably comes to mind is the infamous electric ...
Loading Comments...