JUL 11, 2020 10:28 AM PDT

Understanding the geodynamo

Have you ever heard of the geodynamo? Perhaps not, but its presence has certainly had a huge impact on your life. The theory describes how Earth's magnetic field is generated and maintained by convective flow in the Earth's fluid outer core. According to physicists, this convection is driven by gravitational energy from secular cooling and differentiation of the Earth. A lot of big words, right? And an even bigger significance, because the magnetic field generated by the geodynamo is what allows our planet to deflect harmful ionizing particles from the solar wind and cosmic rays. So why do we know so little about the geodynamo’s origin? 

Well, new research published in Nature Communications by an international collaboration of investigators suggests that the presence of lighter elements in the principally iron core could influence the geodynamo's genesis and sustainability. The team was led by current and former Carnegie scientists Alexander Goncharov, Nicholas Holtgrewe, Sergey Lobanov, and Irina Chuvashova. 

While we know that Earth’s core is predominately iron, seismic data suggests that during the formation of our planet, some lighter elements like oxygen, silicon, sulfur, carbon, and hydrogen dissolved into it. 

The presence of these elements amongst others, including silicon, could affect the thermal conductivity of the geodynamo. In order to investigate this idea, the research team utilized lab-based mimicry of deep Earth conditions to simulate how they would affect the transmission of heat from the planet's iron core out into the mantle.

"The less thermally conductive the core material is, the lower the threshold needed to generate the geodynamo," Goncharov explained. "With a low enough threshold, the heat flux out of the core could be driven entirely by the thermal convection, with no need for the additional movement of material to make it work."

The presence of silicon turned out to be hugely significant. From their simulations, the researchers discovered that with a concentration of about 8 weight percent silicon, the geodynamo could have functioned on heat transmission alone for the planet's entire history!

The researchers plan to continue their investigations in order to determine the influences of oxygen, sulfur, and carbon in the core.

Photo: Pixabay

Sources: Nature Communications, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
MAY 29, 2021
Space & Astronomy
First Matter in the Universe Flowed Like Tap Water
MAY 29, 2021
First Matter in the Universe Flowed Like Tap Water
In two separate studies, researchers led by those at the University of Copenhagen and Queen Mary University of London fo ...
JUN 21, 2021
Microbiology
In a Blow to Enzyme Latch Theory, Soil Microbes Break Down Polyphenols
JUN 21, 2021
In a Blow to Enzyme Latch Theory, Soil Microbes Break Down Polyphenols
Microbes have many connections to humans. Gut microbes have a major influence on our health. For example, when we eat fr ...
JUN 28, 2021
Chemistry & Physics
A full charge in 5 minutes? Sign me up!
JUN 28, 2021
A full charge in 5 minutes? Sign me up!
A breakthrough study published in Nature describes a novel technique that can be used to peek inside lithium-ion batteri ...
AUG 05, 2021
Space & Astronomy
Einstein Was Right, Again: X-rays Observed Behind a Black Hole for the First Time
AUG 05, 2021
Einstein Was Right, Again: X-rays Observed Behind a Black Hole for the First Time
  In an astrophysics first, a team of researchers have directly observed light coming from the backside o ...
AUG 11, 2021
Space & Astronomy
Researchers Solve Jupiters 'Energy Crisis'
AUG 11, 2021
Researchers Solve Jupiters 'Energy Crisis'
Astronomers have solved Jupiter's 'Energy Crisis', a long-standing issue that has puzzled scientists for dec ...
AUG 27, 2021
Space & Astronomy
Researchers Model the Titan Moon in a Tube
AUG 27, 2021
Researchers Model the Titan Moon in a Tube
An image of Saturn's moon Titan on November 11, 1980 during Voyager 1's flyby. Courtesy NASA/JPL-CalTech/Kevin M. Gill
Loading Comments...