AUG 05, 2020 1:10 PM PDT

Scientists incorporate tellurium into hydrocarbon structures

Tellurium is not one of the more talked about elements. As a semiconductor with chemical properties alike those of sulfur and selenium, tellurium does not make an appearance of any significance in our lives as humans – unlike the all-important hydrogen, carbon, and oxygen, for instance. However, chemists from Germany and Finland think that the element deserves more attention.

In a paper published in Chemistry Europe, the team describes how they replaced oxygen with tellurium in arranging ring-shaped hydrocarbon molecules. While tellurium has a different weight, the incorporated tellurium atoms formed symmetrical tubes that interacted with each other via the tellurium atoms, producing what the researchers call “astonishing and beautiful” structures.

"Something special happens when these substances form crystals," says corresponding author Professor Wolfgang Weigand of Friedrich Schiller University Jena. "Virtually infinitely long tubes are then formed, in which the ring-shaped molecules are held together by the tellurium atoms. This happens due to an unusually strong intermolecular interaction. As a result, very interesting structures are created, which we can observe here."

While chemists have previously identified structures with similar properties, such as metal-organic frameworks, Weigand says these structures are unique. "In contrast to those, however, our compounds are not coordination polymers. Therefore, they behave differently. This can be seen, for example, in the fact that they only make these supramolecular forms as crystals and not when they are dissolved," he explains.

Photo: Pixabay

The capacity of these tellurium structures is exciting because of their real-world application potential. For example, the researchers say they may be used to store gases such as carbon dioxide. Despite their small size, there are deep cavities in the compounds that give them an incredibly large surface area - almost 1000 square meters per gram. That’s equivalent to roughly two-and-a-half basketball courts!

"It is in principle conceivable that gases, such as carbon dioxide, could be captured in these cavities," says Wolfgang Weigand. "However, it was important to us, first of all, to explore and study these exciting compounds."

Sources: Chemistry Europe, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
DEC 21, 2020
Chemistry & Physics
Newly described hydrogen hydrate holds potential for hydrogen storage
DEC 21, 2020
Newly described hydrogen hydrate holds potential for hydrogen storage
A study published recently in the journal Physical Review Letters highlights the discovery of a new hydrogen clathr ...
DEC 27, 2020
Chemistry & Physics
The Coolest Molecules of 2020
DEC 27, 2020
The Coolest Molecules of 2020
2020 was a chaotic, stressful year for most, but it did not stop innovative ideas and creative scientific thinking from ...
JAN 28, 2021
Chemistry & Physics
Changing the game to enhance the efficiency of carbon capture systems
JAN 28, 2021
Changing the game to enhance the efficiency of carbon capture systems
In a report published recently in the journal Cell Reports Physical Science, researchers from MIT describe an elabo ...
MAR 07, 2021
Cell & Molecular Biology
Why Are Egg Cells So Large?
MAR 07, 2021
Why Are Egg Cells So Large?
If you've ever seen a video of a sperm cell fertilizing an egg cell, you've probably noticed the huge size difference. T ...
MAR 11, 2021
Chemistry & Physics
More effective way of recycling carbon fibers
MAR 11, 2021
More effective way of recycling carbon fibers
A team from the University of Sydney's School of Civil Engineering has designed a method to improve the recycling of ...
MAR 29, 2021
Chemistry & Physics
Converting rubber tires into graphene...to put into cement?
MAR 29, 2021
Converting rubber tires into graphene...to put into cement?
New efforts to make more eco-friendly concrete involve the addition of graphene, according to a study recently published ...
Loading Comments...