AUG 05, 2020 1:10 PM PDT

Scientists incorporate tellurium into hydrocarbon structures

Tellurium is not one of the more talked about elements. As a semiconductor with chemical properties alike those of sulfur and selenium, tellurium does not make an appearance of any significance in our lives as humans – unlike the all-important hydrogen, carbon, and oxygen, for instance. However, chemists from Germany and Finland think that the element deserves more attention.

In a paper published in Chemistry Europe, the team describes how they replaced oxygen with tellurium in arranging ring-shaped hydrocarbon molecules. While tellurium has a different weight, the incorporated tellurium atoms formed symmetrical tubes that interacted with each other via the tellurium atoms, producing what the researchers call “astonishing and beautiful” structures.

"Something special happens when these substances form crystals," says corresponding author Professor Wolfgang Weigand of Friedrich Schiller University Jena. "Virtually infinitely long tubes are then formed, in which the ring-shaped molecules are held together by the tellurium atoms. This happens due to an unusually strong intermolecular interaction. As a result, very interesting structures are created, which we can observe here."

While chemists have previously identified structures with similar properties, such as metal-organic frameworks, Weigand says these structures are unique. "In contrast to those, however, our compounds are not coordination polymers. Therefore, they behave differently. This can be seen, for example, in the fact that they only make these supramolecular forms as crystals and not when they are dissolved," he explains.

Photo: Pixabay

The capacity of these tellurium structures is exciting because of their real-world application potential. For example, the researchers say they may be used to store gases such as carbon dioxide. Despite their small size, there are deep cavities in the compounds that give them an incredibly large surface area - almost 1000 square meters per gram. That’s equivalent to roughly two-and-a-half basketball courts!

"It is in principle conceivable that gases, such as carbon dioxide, could be captured in these cavities," says Wolfgang Weigand. "However, it was important to us, first of all, to explore and study these exciting compounds."

Sources: Chemistry Europe, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUL 30, 2021
Earth & The Environment
Using Iron Waste to Clean Pesticides
JUL 30, 2021
Using Iron Waste to Clean Pesticides
Groundwater is something most people use every day. Whether for drinking, washing, or growing the food you eat, it is pa ...
AUG 01, 2021
Drug Discovery & Development
New Compound Halts Neurodegeneration in Alzheimer's
AUG 01, 2021
New Compound Halts Neurodegeneration in Alzheimer's
Chemists have synthesized new compounds that can halt neurodegeneration linked to Alzheimer’s and other neurologic ...
SEP 10, 2021
Space & Astronomy
The Future (and Ethics) of Giant Telescopes
SEP 10, 2021
The Future (and Ethics) of Giant Telescopes
The fate of giant telescopes hangs in the balance as this decade comes to an end.
SEP 14, 2021
Plants & Animals
Ant Teeth Can Function Like Miniature Metal Tools
SEP 14, 2021
Ant Teeth Can Function Like Miniature Metal Tools
Researchers have discovered the secret to the powerful cutting ability of ants: they have teeth on the outside of their ...
OCT 01, 2021
Cannabis Sciences
Smartphone Technology Could Help Predict Cannabis Intoxication
OCT 01, 2021
Smartphone Technology Could Help Predict Cannabis Intoxication
Cannabis use can affect the body in a range of ways, including slowing response time. A slower response time affects our ...
NOV 06, 2021
Earth & The Environment
Agriculture Subsidies Should Prioritize Water Conservation
NOV 06, 2021
Agriculture Subsidies Should Prioritize Water Conservation
Demand for water has increased nearly eight fold over the past 100 years. Irrigation for agriculture is by far the most ...
Loading Comments...