AUG 05, 2020 1:10 PM PDT

Scientists incorporate tellurium into hydrocarbon structures

Tellurium is not one of the more talked about elements. As a semiconductor with chemical properties alike those of sulfur and selenium, tellurium does not make an appearance of any significance in our lives as humans – unlike the all-important hydrogen, carbon, and oxygen, for instance. However, chemists from Germany and Finland think that the element deserves more attention.

In a paper published in Chemistry Europe, the team describes how they replaced oxygen with tellurium in arranging ring-shaped hydrocarbon molecules. While tellurium has a different weight, the incorporated tellurium atoms formed symmetrical tubes that interacted with each other via the tellurium atoms, producing what the researchers call “astonishing and beautiful” structures.

"Something special happens when these substances form crystals," says corresponding author Professor Wolfgang Weigand of Friedrich Schiller University Jena. "Virtually infinitely long tubes are then formed, in which the ring-shaped molecules are held together by the tellurium atoms. This happens due to an unusually strong intermolecular interaction. As a result, very interesting structures are created, which we can observe here."

While chemists have previously identified structures with similar properties, such as metal-organic frameworks, Weigand says these structures are unique. "In contrast to those, however, our compounds are not coordination polymers. Therefore, they behave differently. This can be seen, for example, in the fact that they only make these supramolecular forms as crystals and not when they are dissolved," he explains.

Photo: Pixabay

The capacity of these tellurium structures is exciting because of their real-world application potential. For example, the researchers say they may be used to store gases such as carbon dioxide. Despite their small size, there are deep cavities in the compounds that give them an incredibly large surface area - almost 1000 square meters per gram. That’s equivalent to roughly two-and-a-half basketball courts!

"It is in principle conceivable that gases, such as carbon dioxide, could be captured in these cavities," says Wolfgang Weigand. "However, it was important to us, first of all, to explore and study these exciting compounds."

Sources: Chemistry Europe, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUL 29, 2020
Chemistry & Physics
Higher concentrations of naturally-occuring lithium in public water supplies associated with lower suicide rates.
JUL 29, 2020
Higher concentrations of naturally-occuring lithium in public water supplies associated with lower suicide rates.
A new study suggests that trace amounts of lithium in drinking water are associated with lower rates of suicide in certa ...
AUG 27, 2020
Chemistry & Physics
Pheromone Molecule at the Center of Global Locusts Crisis
AUG 27, 2020
Pheromone Molecule at the Center of Global Locusts Crisis
Since earlier this year, agriculture and food production in the developing world have been taking heavy damages from an ...
AUG 28, 2020
Chemistry & Physics
Interacting Time Crystals and the Future of Time Keeping
AUG 28, 2020
Interacting Time Crystals and the Future of Time Keeping
Time crystals, also known as the space-time crystals, is a newly discovered state of matter that demonstrates distinct s ...
SEP 01, 2020
Chemistry & Physics
New printing process turns paper into a keyboard interface
SEP 01, 2020
New printing process turns paper into a keyboard interface
Imagine taking a piece of paper from your notebook and turning it into a keyboard. Can’t visualize it? Well, now y ...
SEP 15, 2020
Chemistry & Physics
Chemistry Grad Students Be Warned: a Robotic Takeover?
SEP 15, 2020
Chemistry Grad Students Be Warned: a Robotic Takeover?
In a recent news release, the research arm of IBM announced that their Zurich team has developed an autonomous ...
OCT 16, 2020
Chemistry & Physics
The "Missing" Laureate at 2020 Physics Nobel
OCT 16, 2020
The "Missing" Laureate at 2020 Physics Nobel
Last week, the science community celebrated the awarding of this year's Nobel Physics Prize to a trio of black hole ...
Loading Comments...