AUG 31, 2020 8:37 AM PDT

Light-weight and fast-charging: the next development of the silicon battery

Engineers are continually working on developing more efficient, sustainable batteries – and there has been a lot of progress in the last years. One such development comes from researchers at Clemson University who have engineered a battery that could be used in space. Their lighter, faster-charging batteries are of interest to NASA because they could be used to power a spacesuit or potentially a Mars rover.

Photo: Pixabay

A report on the technology was published recently in the American Chemical Society journal Applied Materials and Interfaces under the title, "Three-Dimensional Si Anodes with Fast Diffusion, High Capacity, High Rate Capability, and Long Cycle Life." One of the authors, Ramakrishna Podila, says the technology also has implications for satellites.

"Most satellites mainly get their power from the sun," said Podila, who is an assistant professor in the College of Science's department of physics and astronomy and part of the Clemson Nanomaterials Institute (CNI). "But the satellites have to be able to store energy for when they are in the Earth's shadow. We have to make the batteries as light as possible, because the more the satellite weighs, the more its mission costs."

Podila, along with co-authors Shailendra Chiluwal, Nawraj Sapkota, and Apparao M. Rao, used silicon nano-particles to store more electrical charge into the battery, which is supported by a carbon nanotube structure called Buckypaper. Silicon can hold more electrical charge than graphite but has the unfortunate property of breaking into smaller pieces as it charges and discharges. The Buckypaper helps hold the silicon nanoparticles in place.

"The freestanding sheets of carbon nanotubes keep the silicon nanoparticles electrically connected with each other," said first author Shailendra Chiluwal. "These nanotubes form a quasi-three-dimensional structure, hold silicon nanoparticles together even after 500 cycles, and mitigate electrical resistance arising from the breaking of nanoparticles."

Another benefit of silicon is that the batteries can charge at higher current. In other words, they can charge faster (up to four times!) than typical batteries. Silicon also is a light-weight material, so these batteries are not as heavy as conventional ones (ever try to lift a car battery?!).

"Silicon as the anode in a lithium-ion battery represents the 'holy grail' for researchers in this field," said Rao, adding that they could also be used in electric vehicles. "Our next goal is to collaborate with industrial partners to translate this lab-based technology to the marketplace," said Podila.

Sources: Applied Materials and Interfaces, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUN 05, 2021
Space & Astronomy
Did Heat from Asteroids Provide the Building Blocks for Life on Earth?
JUN 05, 2021
Did Heat from Asteroids Provide the Building Blocks for Life on Earth?
Researchers from Kobe University in Japan have found that heat generated by the impact of small astronomical bodies coul ...
JUN 29, 2021
Chemistry & Physics
Education In The Post-Covid World: Alternative Ways to Learn Chemistry & Physics
JUN 29, 2021
Education In The Post-Covid World: Alternative Ways to Learn Chemistry & Physics
Article Summary As the COVID-19 pandemic dies down, its effects will echo throughout the STEM field. Physics and chemist ...
JUN 13, 2021
Chemistry & Physics
How to 3D print customizable artificial body parts and medical devices
JUN 13, 2021
How to 3D print customizable artificial body parts and medical devices
Researchers from the University of Nottingham have figured out a new 3D printing process technique that allows for the m ...
AUG 09, 2021
Earth & The Environment
New Pterosaur Fossil discovered in Australia
AUG 09, 2021
New Pterosaur Fossil discovered in Australia
Pterosaur fossils have been discovered in all corners of the globe since their first discovery in Kansas in the 1700s. S ...
AUG 26, 2021
Chemistry & Physics
The Most Detailed Map of the Andromeda Galaxy taken by Radio Telescope
AUG 26, 2021
The Most Detailed Map of the Andromeda Galaxy taken by Radio Telescope
Sitting at 2.5 million light-years away, the Andromeda Galaxy is the closest galaxy to our own Milky Way. Since it&rsquo ...
SEP 09, 2021
Chemistry & Physics
"Shape-Shifting" Birds: Climate Change's Newest Outcome
SEP 09, 2021
"Shape-Shifting" Birds: Climate Change's Newest Outcome
A new study released last Tuesday highlights a surprising response to climate change: physical changes in animal mo ...
Loading Comments...