SEP 30, 2020 9:01 AM PDT

Re-engineering elastomers

A study entitled "Chelation Crosslinking of Biodegradable Elastomers," highlights the development of a framework that mixes different metals with a single polymer. Designed by engineers at Cornell, the framework improves upon the process of fabricating polymers with rubber-like properties called elastomers. The results are published in the journal in Advanced Materials.

Elastomers have the potential to be integrated into the body in order to assist in tissue repair. However, the process of making elastomers is difficult and limiting. That’s why scientists from Cornell's Biofoundry Lab decided to try a new technique using copper to produce an elastomer that can repair heart tissue. Copper is known for helping to trigger angiogenesis when new blood vessels grow from existing ones.

Researcher Ying Chen was able to engineer a biocompatible and biodegradable elastomer with copper ions and chelating ligands, molecules that form tight bonds to metal ions, and can create a strong crosshatched molecule. This unique structure has so much potential that even the researchers were overwhelmed by its versatility.

Chen collaborated on this project with Yadong Wang, the McAdam Family Foundation Professor of Cardiac Assist Technology in the Meinig School of Biomedical Engineering. Chen stated, "The discovery was pretty exciting. I just wanted to move on with my copper elastomer because I'm focused on tissue engineering, but Professor Wang was saying, 'Slow down, we need to test how powerful this platform is and what we can do with it.'"

Sources: Pixabay

Wang added, "When Ying showed me what she had done, I said, 'This material is amazing, there's so much you can do with just this one simple design. Using many different types of metal ions, one polymer can turn into eight, nine, 10 different elastomers."

For example, Chen made history not only creating the first biodegradable metal-ion elastomer but making six unique elastomers using one polymer and six different metals and another with a calcium-magnesium mix, for a total of seven elastomers!

"We are just scratching the surface," said Wang, commenting that the framework could be potentially expanded from applications in blood vessel and tissue biopolymers to industrial elastomers such as eco-friendly tires that biodegrade. Meanwhile, Chen plans to continue her research on the copper elastomer graft and its ability to repair blood vessels and heart tissue.

Sources: Advanced Materials, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
NOV 12, 2020
Chemistry & Physics
Can a Chemical Be Both Nurturing and Destructive?
NOV 12, 2020
Can a Chemical Be Both Nurturing and Destructive?
On August 4, a megascale explosion almost leveled half of Beirut, the capital city of Lebanon. At the center of the negl ...
NOV 25, 2020
Chemistry & Physics
The physics behind the face mask
NOV 25, 2020
The physics behind the face mask
A study published in Physics of Fluids investigates the physics of face masks to better comprehend how we can effectivel ...
DEC 03, 2020
Neuroscience
Scientists Invent Noninvasive Microscope to Observe Neurons
DEC 03, 2020
Scientists Invent Noninvasive Microscope to Observe Neurons
To obtain high-resolution images of the brain, researchers usually need to reduce the thickness of the skull or cut into ...
JAN 10, 2021
Chemistry & Physics
Documenting biological magnetoreception in living cells
JAN 10, 2021
Documenting biological magnetoreception in living cells
New research published recently in the Proceedings of the National Academy of Sciences from a team of scientists fr ...
FEB 22, 2021
Chemistry & Physics
New hydrogels mimic biological tissue but are even stronger
FEB 22, 2021
New hydrogels mimic biological tissue but are even stronger
In a new study recently published in Nature, researchers from UCLA describe a process they have developed to produc ...
MAR 02, 2021
Chemistry & Physics
Using materials science to fight SARS-CoV-2
MAR 02, 2021
Using materials science to fight SARS-CoV-2
Materials scientists around the world have been hard at work designing and developing materials with antiviral propertie ...
Loading Comments...