OCT 20, 2020 3:03 PM PDT

How to generate visible laser light on microchips

A new study reported in the journal Optica highlights the development of a microchip technology that can convert invisible near-infrared laser light into red, orange, yellow, and green lasers. Led by researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland, the study has implications for applications in quantum information science.

The technology adds to the NIST on a Chip program by producing laser light on integrated microchips. The goal of the technology is to allow industries, medicine, and academia to access a wide range of specified wavelengths using a single, small-scale platform, that is inexpensive and integrates lasers with miniature optical circuits that can be used to precision timekeeping and quantum communication systems.

Small, lightweight visible-light laser systems that have low energy requirements are the key to developing atomic optical technologies that can be used outside of laboratories. To try to achieve this, Xiyuan Lu, Kartik Srinivasan, and their colleagues used silicon nitride, a material that has a nonlinear response to light.

As explained by Science Daily, that means that “if incoming light has high enough intensity, the color of the exiting light does not necessarily match the color of the light that entered. That is because when bound electrons in a nonlinear optical material interact with high-intensity incident light, the electrons re-radiate that light at frequencies, or colors, that differ from those of the incident light.”

Photo: Pexels

Using a process called third-order optical parametric oscillation (OPO), in which the nonlinear material converts incident light in the near-infrared into two frequencies, the researchers were finally able to produce particular visible-light wavelengths. They then designed different microresonators to put on each microchip so that they would generate different colors.

"The benefit of our approach is that any one of these wavelengths can be accessed just by adjusting the dimensions of our microresonators," said Srinivasan.

"Though a first demonstration," Lu said, "we are excited at the possibility of combining this nonlinear optics technique with well-established near-infrared laser technology to create new types of on-chip light sources that can be used in a variety of applications."

Sources: Optica, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
NOV 06, 2020
Chemistry & Physics
The Most Powerful X-ray Source On Earth
NOV 06, 2020
The Most Powerful X-ray Source On Earth
Located inside the Sandia National Laboratories in Albuquerque, New Mexico, the Z Pulsed Power Facility (or Z Machine) i ...
NOV 22, 2020
Chemistry & Physics
New material removes copper ions from wastewater
NOV 22, 2020
New material removes copper ions from wastewater
A promising solution relies on materials that capture heavy metal atoms, such as copper ions, from wastewater through a ...
NOV 27, 2020
Chemistry & Physics
Our Chemistry Connection to Stars and the Cosmo
NOV 27, 2020
Our Chemistry Connection to Stars and the Cosmo
A common entity that connects everything from majestically looking galaxies and nebula to the enormously diversified bio ...
JAN 18, 2021
Chemistry & Physics
Watching the eletronic signals of a wandering mind
JAN 18, 2021
Watching the eletronic signals of a wandering mind
A study published recently in the Proceedings of the National Academy of Sciences contemplates the places our minds ...
FEB 09, 2021
Plants & Animals
Venus Flytraps Generate Magnetic Fields
FEB 09, 2021
Venus Flytraps Generate Magnetic Fields
The Venus flytrap (Dionaea muscipula) might be the most famous carnivorous plant; it can entice prey to land on its leaf ...
MAR 02, 2021
Chemistry & Physics
Using materials science to fight SARS-CoV-2
MAR 02, 2021
Using materials science to fight SARS-CoV-2
Materials scientists around the world have been hard at work designing and developing materials with antiviral propertie ...
Loading Comments...