JAN 03, 2021 8:59 AM PST

Cracking the structural code of nacre

Researchers have finally figured out how nacre – also known as mother of pearl – forms its perfect structure. As one of the strongest naturally-occurring materials known to science, nacre is coveted for its highly periodic and uniform structure – but until now how that structure forms has been an enigma.

"In the very beginning, the layered mineral-organic tissue is full of structural faults that propagate through a number of layers like a helix. In fact, they look like a spiral staircase, having either right-handed or left-handed orientation," says Dr. Igor Zlotnikov, research group leader at the B CUBE -- Center for Molecular Bioengineering at TU Dresden. "The role of these defects in forming such a periodic tissue has never been established. On the other hand, the mature nacre is defect-free, with a regular, uniform structure. How could perfection emerge from such disorder?"

In order to figure out the answer to this question, a collaboration of scientists from Zlotnikov’s group and the European Synchrotron Radiation Facility (ESRF) used synchrotron-based holographic X-ray nano-tomography to observe how nacre develops.

"The combination of electron-dense and highly periodical inorganic platelets with delicate and slender organic interfaces makes nacre a challenging structure to image. Cryogenic imaging helped us to obtain the resolving power we needed," explains Dr. Pacureanu from the X-ray Nanoprobe group at the ESRF.

"Nacre is an extremely fine structure, having organic features below 50 nm in size. Beamline ID16A at the ESRF provided us with an unprecedented capability to visualize nacre in three-dimensions," adds Dr. Zlotnikov.

Photo: Pixabay

In order to understand the images that they captured, the researchers trained a neural network to separate the layers of nacre, thus allowing them to visualize the growth behavior of the structure over time. What they saw was unexpected, reports Science Daily:

“Defects of opposite screw direction were attracted to each other from vast distances. The right-handed and left-handed defects moved through the structure, until they met, and canceled each other out. These events led to a tissue-wide synchronization. Over time, it allowed the structure to develop into a perfectly regular and defect-free.”

The researchers say their discovery not only sheds light on how nacre forms - which has remained a mystery for years - but could also inform the future development of biogenic structures

Sources: Nature Physics, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
OCT 21, 2020
Technology
Can House Paint Revolutionize Technology?
OCT 21, 2020
Can House Paint Revolutionize Technology?
Can house paint revolutionize technology? Apparently, yes! Researchers discovered that titanium oxide, a component of pa ...
NOV 25, 2020
Chemistry & Physics
The physics behind the face mask
NOV 25, 2020
The physics behind the face mask
A study published in Physics of Fluids investigates the physics of face masks to better comprehend how we can effectivel ...
DEC 02, 2020
Chemistry & Physics
New sensor detects hydrogen using light instead of heat
DEC 02, 2020
New sensor detects hydrogen using light instead of heat
A new hydrogen sensor has been developed by researchers at RMIT University in Australia using light instead of heat. The ...
DEC 09, 2020
Chemistry & Physics
Blended solar cells improves efficiency
DEC 09, 2020
Blended solar cells improves efficiency
A study published last month in the journal Macromolecules from researchers at Hiroshima University in Japan reports on ...
DEC 24, 2020
Chemistry & Physics
Novel Two-phased Particles are the Ultimate Authenticity Tag
DEC 24, 2020
Novel Two-phased Particles are the Ultimate Authenticity Tag
Counterfeit goods producers are flooding the global market with low-quality, sometimes dangerous merchandise and ripping ...
JAN 17, 2021
Chemistry & Physics
Cleaning up microfibers at the source with electrolytic oxidation
JAN 17, 2021
Cleaning up microfibers at the source with electrolytic oxidation
A new method of eradicating microplastics in wastewater has been described in a study published recently in the Env ...
Loading Comments...