APR 14, 2021 11:46 AM PDT

Amping up the fight against superbugs with black phosphorus

A research team from RMIT University in Melbourne, Australia, has devised an ultra-thin 2D antimicrobial coating that could be used to counter drug-resistant bacteria and fungal cells. The coating can be applied to wound dressings and implants to prevent infections from pathogens. 

The coating is made from a 2D material that has only previously been intended for next-generation electronics. However, according to the study published in the American Chemical Society's journal Applied Materials & Interfaces, the material can be repurposed with black phosphorus to heighten antibacterial and antifungal properties. 

"These pathogens are responsible for massive health burdens and as drug resistance continues to grow, our ability to treat these infections becomes increasingly difficult. We need smart new weapons for the war on superbugs, which don't contribute to the problem of antimicrobial resistance," says co-lead researcher Dr. Aaron Elbourne, who is a Postdoctoral Fellow in the School of Science at RMIT. Fungal infections are responsible for roughly 1.5 million deaths globally every year while antibiotic resistance kills approximately 700,000 people annually. These numbers are expected to rise over the next decades unless there are major advances in antibacterial therapies.

The coating works by way of cellular oxidation of bacterial and fungal cells, leaving human cells alone. “Our nano-thin coating is a dual bug killer that works by tearing bacteria and fungal cells apart, something microbes will struggle to adapt to. It would take millions of years to naturally evolve new defenses to such a lethal physical attack. While we need further research to be able to apply this technology in clinical settings, it's an exciting new direction in the search for more effective ways to tackle this serious health challenge," notes Elbourne.

"Black phosphorus breaks down in the presence of oxygen, which is normally a huge problem for electronics and something we had to overcome with painstaking precision engineering to develop our technologies," adds co-lead researcher Associate Professor Sumeet Walia of RMIT's School of Engineering. "But it turns out [that] materials that degrade easily with oxygen can be ideal for killing microbes -- it's exactly what the scientists working on antimicrobial technologies were looking for. So our problem was their solution."

The team demonstrated the coating’s effectiveness at destroying 99% of cells of five common bacteria strains (including E. coli and drug-resistant MRSA) and five types of fungus (including Candida auris) within two hours. Additionally, the black phosphorus coating also self-degraded within 24 hours of application, meaning that it would be safe for use in the human body. 

Sources: Applied Materials & Interfaces, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
AUG 17, 2021
Chemistry & Physics
Physicists Transform Pure Energy into Matter and Antimatter
AUG 17, 2021
Physicists Transform Pure Energy into Matter and Antimatter
A new study published in Physical Review Letters presents evidence for the creation of matter and antimatter from energy ...
AUG 26, 2021
Immunology
Sugar-Coating Organs Stops Them From Getting Rejected
AUG 26, 2021
Sugar-Coating Organs Stops Them From Getting Rejected
Once organ failure patients receive the gift of a transplant, they face a life-long threat of immune rejection. Their im ...
AUG 25, 2021
Chemistry & Physics
Self-Assembling Molecules: A Potential "One-Size-Fits-All" Cancer Therapy
AUG 25, 2021
Self-Assembling Molecules: A Potential "One-Size-Fits-All" Cancer Therapy
A new study from the University of Huddersfield shows promising breakthroughs on the use of self-assembling molecules as ...
AUG 30, 2021
Chemistry & Physics
Arctic Could Be "Practically Ice Free" Before 2050
AUG 30, 2021
Arctic Could Be "Practically Ice Free" Before 2050
The Intergovernmental Panel on Climate Change’s (IPCC’s) recent physical climate science report details the ...
OCT 13, 2021
Chemistry & Physics
The Nobel Prize in Chemistry
OCT 13, 2021
The Nobel Prize in Chemistry
It's Nobel Prize season, and the third to be awarded was in the field of Chemistry. The winners were two men working on ...
OCT 13, 2021
Space & Astronomy
NASA Plans to Bring Mars Rocks Back to Earth
OCT 13, 2021
NASA Plans to Bring Mars Rocks Back to Earth
In continuing the time-honored tradition of celestial rock collecting, NASA’s Perseverance rover has collected a s ...
Loading Comments...