MAY 21, 2021 1:40 PM PDT

New water filtration process mimics our bodies

An engineering team from The University of Austin has collaborated with international scientists to develop a process that filters salt and other elements out of water more efficiently. The process mimics the way that human proteins called aquaporins control the transport of water in and out of cells. The study’s findings were published recently in the journal Nature Nanotechnology.

Describing the molecule-size water transport channels he helped design, Manish Kumar, an assistant professor in the Cockrell School of Engineering's Department of Civil, Architectural and Environmental Engineering, commented: "It copies nature, but it does so by breaking the rules nature has established. These channels facilitate speedy transport of molecules you want, like water, and block those you don't want, like salt."

Indeed, it is the transport channels’ ability to keep out protons and molecules like salt that makes them appropriate for desalination and water purification purposes. Yet, in this case, the engineers took the design of biological aquaporins and improved it, making their transport channels move water 2.5 times faster than aquaporins. They did so by densely packing the channels into a membrane and adding folds in the channels, which create more space for the flow of water. 

"These artificial channels in essence solve the critical technical challenges of only allowing water molecules to pass while excluding other solutes like salt and protons," said professor Huaqiang Zeng of Department of Chemistry at Hainan University and the Institute of Advanced Synthesis at Northwestern Polytechnical University in China. "Their extraordinary water transportation speed and the fact that these channels allow for simpler membrane fabrication suggest they will become a crucial component of next-generation membranes for producing clean water to address severe scarcity facing human beings in this century."

In the future, the researchers intend to introduce their water transport channels into reverse-osmosis membrane technology that turns seawater to potable water.

Sources: Nature Nanotechnology, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
MAR 03, 2021
Chemistry & Physics
Exploring the swirlonic state of active matter
MAR 03, 2021
Exploring the swirlonic state of active matter
Research published in the journal Scientific Reports describes a new kind of active matter, termed a swirlonic state. As ...
MAR 08, 2021
Chemistry & Physics
Newly observed quasar jet sheds light on early galaxy formation
MAR 08, 2021
Newly observed quasar jet sheds light on early galaxy formation
New observations from the National Science Foundation's Karl G. Jansky Very Large Array (VLA) and Very Long Baseline ...
MAR 16, 2021
Chemistry & Physics
Is your air purifier making your air more polluted?
MAR 16, 2021
Is your air purifier making your air more polluted?
A study from a collaboration of researchers at Illinois Tech, Portland State University, and Colorado State University h ...
MAY 06, 2021
Chemistry & Physics
New 3D printed biomaterial paves the way for artificial leaves
MAY 06, 2021
New 3D printed biomaterial paves the way for artificial leaves
A study published in the journal Advanced Functional Materials highlights a new bioprinting technique that can be u ...
MAY 18, 2021
Chemistry & Physics
What's all the fuss about diamonds, anyway?
MAY 18, 2021
What's all the fuss about diamonds, anyway?
You might only think of rings and bling when you think of diamonds, but in fact, there are a whole lot more uses for dia ...
JUN 11, 2021
Chemistry & Physics
Cutting-edge wearables: the next generation of electronics
JUN 11, 2021
Cutting-edge wearables: the next generation of electronics
New research published in Applied Physics Reviews from AIP Publishing considers the development of flexible supercapacit ...
Loading Comments...