JAN 01, 2014 12:00 AM PST

Quantum Bit Superposed for Record-Smashing 39 Minutes

WRITTEN BY: Jen Ellis
The seemingly-impossible goal of building a functioning quantum computer took a major step forward this week, as a Canadian-led team of researchers announced they had made a particle be super positioned as both a 1 and a 0 for a staggeringly-long 39 minutes: more than 10 times longer than any previous attempt has accomplished. And incredibly, the superposed "qubit" remained stable at room temperature.

The research, published in the journal Science, is being hailed as a major breakthrough. One that not only demonstrates that quantum computing is feasible but that it might be possible to adapt current manufacturing technology to produce quantum-based systems on a commercial scale.

The advantages of a quantum computer are enormous in comparison to the standard model on which all digital processing is built upon. From the earliest days, computers have based the input, storage, processing and output of information on a binary system using 1s and 0s, individually referred to as bits. Quantum computing however would employ the very peculiar properties of quantum mechanics, which establish that there are more states a particle can exist in other than 1 and 0.

According to quantum theory a particle can be 1, it can be 0... and it can be both at the same time! In a realm where normal understanding of numbers breaks down into outright oddness, the digital model no longer applies and another unit of information - called the qubit - comes into play. With more possible states from which to operate and calculate, a working quantum computer would be exponentially more powerful than any current computer: work that would take years or even decades for an existing computer could be accomplished in literally seconds.

The problem is that in keeping with quantum mechanics, a qubit cannot be duplicated or even measured without altering the state of the particle: destroying the information while attempting to process it, and making even error-correction practically impossible. One solution has been to apply a "brute force" approach: giving the same state to a multitude of qubits.

Unfortunately for all of the enticing qualities of a quantum system, real-world applications have been "really sort of pie in the sky because no one has a qubit that can last long enough," said Mike Thewalt, physics professor at Simon Fraser University in Burnaby, British Columbia and co-author of the study.

The longest that a qubit has been determined to maintain superposition has been mere seconds, achieved at temperatures hovering just above zero on the Kelvin scale. Thewalt, working with Stephanie Simmons of Oxford University, Ph.D candidate Kamyar Saeed and others, embedded phosphorous atoms within a very pure silicon crystal matrix at low temperature, hit the crystal with laser light to tear away electrons that would lead to super positioning collapse, and then bombarded the crystal with magnetic pulses. The newly-created qubits remained super positioned for 39 minutes, and even lasted three hours at super-cold temperatures before being warmed again and found to still be carrying information.

In the absence of expensive and bulky equipment previously required to achieve and hold super positioning, it is already being suggested that silicon-based processor manufacturing methods currently used to build computers could be retooled toward the manufacturing of quantum-based systems. However, the next biggest hurdles - increasing the scale of the qubits utilized and finding a means of reading the data - remain elusive. The research team is confident that it is only a matter of time before these obstacles are also overcome. Even so, the team's achievement is still much to celebrate.
About the Author
You May Also Like
NOV 12, 2018
Plants & Animals
NOV 12, 2018
Newly-Discovered Tea Plant Naturally Exhibits Little or No Caffeine
Tea is perhaps one of nature’s purest flavored drinks, and it can be brewed from not much more than some hot water and lightly-processed tea plant le...
DEC 02, 2018
Space & Astronomy
DEC 02, 2018
Here's Why Harvard Scientists Believe Oumuamua Could Have Been an Alien Spacecraft
  When an interstellar object came sailing through our solar system last year, it astonished astronomers because they couldn’t quite categorize...
DEC 11, 2018
Plants & Animals
DEC 11, 2018
Geckos Can Run Across Water, New Study Investigates How
Geckos are agile small reptiles that, with the help of their grippy little feet, sport the innate ability to scale vertical walls and perform incredible gl...
DEC 26, 2018
Drug Discovery
DEC 26, 2018
Novel Water Approach May Improve Drug Design
An understanding of the basic molecular properties of water greatly influences drug design. But, a significant comprehension of water interactions and its ...
DEC 28, 2018
Chemistry & Physics
DEC 28, 2018
What's a Dyson Sphere and How to Build One?
Proposed by physicist Freeman Dyson in 1960, a Dyson sphere is a speculative megastructure that harvests a star's energy by partially or completely sur...
JAN 30, 2019
Chemistry & Physics
JAN 30, 2019
Autonomous Vehicle Tech Part I: See Around Corners
The development of autonomous vehicles has picked up tremendous momentum in the recent decade. Armed with technologies such LIDARs (also known as 3D laser ...
Loading Comments...