OCT 26, 2016 6:25 AM PDT

Cereal reveals physics of floating objects

YALE / BROWN (US) — A scientist’s breakfast sparked new research into how floating objects—like pieces of cereal and tiny colloidal particles—form patterns.

Andong He, a postdoctoral student at Yale University, wanted to know how cereal shape influences the way cereals floating in the milk join.

Along with collaborators Khoi Nguyen and Shreyas Mandre of Brown University, he reports his findings in Europhysics Letters.


“Two floating objects, when they attract each other, will try to maximize the area of contact,” says He, of the department of geology & geophysics. “Think about two ellipses—instead of tip to tip, they will try to align so that they are side to side.”

The main reason for this tendency is that floating objects (pieces of cereal, for example) experience the so-called capillary force, which emerges from the natural attraction of a liquid’s molecules to the molecules of an adjacent solid.

A lone object afloat on an infinite surface will not move, because the total force is zero. But when there are several objects in the liquid, a net force acting on each causes them to move and ultimately join.

As the capillary force brings objects together, the associated torque further tends to maximize contact by rotating the objects, although rotating is not the only way. “If the objects are smooth enough, they can slide along each other,” says He. “But the overall trend is always to decrease the gap between the objects, maximizing shared surface area as much as possible.”

In an experiment, the authors used thin plastic sheets, with and without polished edges, and observed rotating and sliding motion.

The results could help explain patterns formed by a wide variety of floating objects, including micrometer-sized colloidal particles, aquatic plant seeds, and water striders.

The researchers also worked out the fundamental principle of attraction in a new regime—that is, when floating objects are very close to each other.

This could serve as a conceptual basis for addressing problems in materials processing and microelectronics, such as self-assembly of objects by flotation and geometrically controlled coagulation.
“You will never think of your breakfast in the same way again,” says He.

Brown University and The Nordic Institute for Theoretical Physics provided support for the research.

Source: Yale University

This article was originally published on Futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
OCT 16, 2019
OCT 16, 2019
Paper-based technology can sense iron levels in fortified foods
In many low-income nations, mass food fortification programs have grown to address issues surrounding poor nutrition address nutrient in their populations....
OCT 30, 2019
Drug Discovery & Development
OCT 30, 2019
Advancing Nanocontainers for Drug Delivery
Nanocontainers work by delivering drugs to a localized region in the body, many chemotherapeutics work in that matter. The high specificity of this drug de...
OCT 31, 2019
Cell & Molecular Biology
OCT 31, 2019
Researchers Explore the Electricity-Conducting Power of Proteins
Researchers have known that proteins can insulate electrical flow, but their power as conductors has only recently been recognized....
DEC 15, 2019
Space & Astronomy
DEC 15, 2019
MAVEN Mission Connects Mars' Wind Patterns to Surface Features
NASA’s MAVEN mission, launched on November 18th, 2013, has been orbiting Mars and investigating the planet’s features for more than half a deca...
DEC 20, 2019
Chemistry & Physics
DEC 20, 2019
Physics Breakthroughs in 2019
The Physics World magazine is an iconic publication in the scientific community. This month, its editorial team selected the top 10 Breakthroughs for...
DEC 24, 2019
Chemistry & Physics
DEC 24, 2019
Santa's not the Only One that's Making Haste - the Magnetic North Pole's Wandering Accelerates
According to the latest World Magnetic Model (WMM) released by the  NOAA's National Centres for Environmental Information (NCEI), the  Earth&...
Loading Comments...