MAR 10, 2015 7:44 AM PDT

Pssst! Secret of Wrinkling, Folding, and Creasing

WRITTEN BY: Judy O'Rourke
The process of wrinkle formation is familiar to anyone who has ever sat in a bathtub a little too long. But exactly why layered materials sometimes form one kind of wrinkly pattern or another - or even other variations, such as creases, folds, or delaminated buckles - has now been explained at a fundamental level by researchers at MIT.
Why do layered materials form one kind of wrinkly pattern or another? MIT experts describe a patterning process that applies to everything.
The underlying process is the same in all of these cases: Layers of material with slightly different properties - whether skin tissue or multilayer materials created in the lab - tend to form patterned surfaces when they shrink or stretch in ways that affect the layers differently. But the new analysis, for the first time, creates a unified model that shows exactly how the properties of the individual layers, and how they are bonded to each other, determines the exact form of the resulting texture.

MIT associate professor of mechanical engineering Xuanhe Zhao, PhD, and postdoc Qiming Wang, PhD, have published their findings in the journal Scientific Reports. The patterning process they describe applies to everything from the folds on the surface of the brain to wrinkles on an aging face, and from the buckling of tree bark to the ridged skin of a pumpkin.

By understanding the factors that produce these patterns, the researchers say, it should become easier to design synthetic materials with exactly the kinds of surfaces needed for specific applications - such as better traction, or water-shedding properties. The work could also lead to a better understanding of many biological processes, Zhao says, including the growth of plants, animals, microbial colonies, and organs in the body.

"We propose a systematic approach," Zhao says. The work began with a classification of patterns into specific categories: wrinkles, creases, folds, period doubles, ridges, and delaminated buckles.

"Wrinkles," in this scheme, have a relatively uniform wavy shape - a sinusoidal curve - when seen in cross-section, Wang says, while "creases" are sharp indentations like those seen on the brain's surface. "Delaminated buckles" form when layers start to come apart, as on the bark of a tree, and "ridges" form relatively narrow, spaced-out peaks.

Then, describing each of the forms as a different "phase" of the layered material, the researchers created a three-dimensional phase diagram that shows how three basic characteristics of the layered material - having to do with the relationship between the different materials' expansion or shrinkage, rigidity, and how tightly bonded they are - lead to these different outcomes.

Using this diagram, Zhao says, "We can quantitatively predict which state a surface will fold into, so you can design the pattern you want." These same principles "apply to various length scales, from very small to very large," he adds.

"Now, we can guide the design of new patterns and functions," Wang says, "by going to a set of parameters predicted by the model. The surprising thing is, with so many complicated shapes, now you can just use one system, one understanding [to explain variations]. This is the simplest model that explains all these patterns."

The researchers expect that this model will not only be helpful for understanding growth and aging patterns in biological organisms, but could help in the design of materials for disease treatment, cell cultures, control of biofouling, controllable properties of water shedding, and flexible electronic materials.

[Source: MIT]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
OCT 10, 2019
Chemistry & Physics
OCT 10, 2019
2019 Nobel Prize in Chemistry: an Electrifying Win for Li-ion Battery Pioneers
Light-weight and capable of storing a substantial amount of electricty, lithium-ion (Li-ion) batteries have transformed many aspects of our moder...
NOV 22, 2019
Chemistry & Physics
NOV 22, 2019
Scientists Observed the Root Cause of Lithium Batteries Failures in Real Time
Lithium batteries have high energy storage capacity, but sometimes they have unexpected failures and can even cause a fire. A team of scientists at the Dep...
NOV 26, 2019
Space & Astronomy
NOV 26, 2019
Jupiter's Great Red Spot is as Powerful as it is Captivating
Jupiter is the largest known planet in our solar system, but even that isn’t the gas giant’s most discernible feature – that title belong...
NOV 28, 2019
Chemistry & Physics
NOV 28, 2019
Wave-Matter Duality Observed on a Biological Macromolecule for the First Time
Quantum physics tells us about the properties and behaviors of particles in the atomic and subatomic world. But scientists have long held the belief that t...
JAN 13, 2020
Chemistry & Physics
JAN 13, 2020
Magnetic Field-guided Tethered-probe Can Navigate Complex Vascular Networks
Deep and complex vasculatures such as carotid arteries represent a challenge for diagnosis and treatment because they are buried underneath layers of other...
FEB 10, 2020
Chemistry & Physics
FEB 10, 2020
Portable Biofactories that Can Crank Out Medicine On-Demand
A hydrogel is a water-dispersed, polymer colloid that's been popularly explored in biomedicine. A collaborative project between the University of Texas...
Loading Comments...