FEB 02, 2017 8:02 PM PST

Metal that Conducts Electricity But Not Heat

WRITTEN BY: Jennifer Ellis

Metals are known as good conductors of both heat and electricity. Regardless of temperature or other factors, typical conductivity does not change. This property is known as the Wiedemann-Franz Law. Essentially, the law states that good conductors of electricity are also good conductors of heat.

Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and at the University of California, Berkeley have found a metal that counteracts this law. Vanadium dioxide is a good conductor of electricity but not of heat.

In this false-color scanning electron microscopy image, thermal conductivity was measured by transporting heat from the suspended heat source pad (red) to the sensing pad (blue). The pads are bridged by a VO2 nanobeam. (Credit: Junqiao Wu/Berkeley Lab)

Vanadium dioxide is already known to have unusual characteristics, and can convert from an insulator to a metal at 67 degrees Celsius. But when studying vanadium dioxide’s properties, the team was able to delve further into how the material is so unique by investigating not only the crystal lattice structure of the material but also the movement of electrons. This is important in the conduction of heat, which occurs through metals by the random movement of electrons. However, in vanadium dioxide, the electron movement is much more structured so heat is not able move through efficiently.

“The electrons were moving in unison with each other, much like a fluid, instead of as individual particles like in normal metals,” said Wu. “For electrons, heat is a random motion. Normal metals transport heat efficiently because there are so many different possible microscopic configurations that the individual electrons can jump between. In contrast, the coordinated, marching-band-like motion of electrons in vanadium dioxide is detrimental to heat transfer as there are fewer configurations available for the electrons to hop randomly between.”

Collaboration between Wu’s lab at LBL and Olivier Delaire at DOE’s Oak Ridge National Laboratory and an associate professor at Duke University allowed the team for perform simulations and X-ray scattering experiments to work out how much thermal conductivity the vanadium dioxide had based on its electron movement. They found that the thermal conductivity coming from electrons is ten times smaller than what would be expected from the Wiedemann-Franz Law.

In an interesting turn, the thermal and electrical conductivity of the material can be adjusted by mixing the metal with other materials, like tungsten. The mix of materials changes the temperature at which the vanadium dioxide becomes metallic. This change in temperature can convert the material into a better heat conductor at certain temperatures and back to an insulator at others.

“By tuning its thermal conductivity, the material can efficiently and automatically dissipate heat in the hot summer because it will have high thermal conductivity, but prevent heat loss in the cold winter because of its low thermal conductivity at lower temperatures,” explains co-lead author Fan Yang, a postdoctoral researcher at Berkeley Lab’s Molecular Foundry.

The material and its mixes have applications in helping dissipate heat in engines, or being integrated into a window coating to improve the energy efficiency in buildings. More needs to be learned about the material before it is used in commercial applications, but the findings stimulate new interest in creating materials with new properties.

Sources: Lawrence Berkeley Labs, Science

About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
MAR 25, 2021
Clinical & Molecular DX
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
MAR 25, 2021
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
Doppler radars are used by cops to catch speeding drivers, in spacecraft navigation, and for forecasting the weather. No ...
MAR 23, 2021
Chemistry & Physics
Honeybees send chemical messages by "twerking"
MAR 23, 2021
Honeybees send chemical messages by "twerking"
Remember playing telephone as a kid (or an adult)? It always brings a laugh when you try to pass a word or sentence alon ...
APR 14, 2021
Chemistry & Physics
Amping up the fight against superbugs with black phosphorus
APR 14, 2021
Amping up the fight against superbugs with black phosphorus
A research team from RMIT University in Melbourne, Australia, has devised an ultra-thin 2D antimicrobial coating that co ...
MAY 05, 2021
Chemistry & Physics
Chemical nose sniffs out DNA irregularities
MAY 05, 2021
Chemical nose sniffs out DNA irregularities
A new study published in the journal Nature Chemistry details the development of a chemical nose that can identify ...
MAY 18, 2021
Chemistry & Physics
What's all the fuss about diamonds, anyway?
MAY 18, 2021
What's all the fuss about diamonds, anyway?
You might only think of rings and bling when you think of diamonds, but in fact, there are a whole lot more uses for dia ...
MAY 24, 2021
Chemistry & Physics
Plasma jets observed interacting with magnetic fields in far-off galaxy cluster
MAY 24, 2021
Plasma jets observed interacting with magnetic fields in far-off galaxy cluster
New observations from radio telescopes and supercomputer simulations show plasma jets interacting with magnetic fields i ...
Loading Comments...