DEC 28, 2017 9:00 AM PST

Your Next Holiday Gift List Could Include Graphene-Based Wearables

Graphene, the one-atom-thick carbon structures, are without a doubt the most buzzed-about material in the world of science today. The 2010 Nobel Prize was awarded to the physicists Kostya Novoselov and André Geim, the pioneers in creating and characterizing this miraculous matter.

Laboratory-scale process unit. Illustration: Daniel Wand. Credit: Karim et al./2017 ACS Nano

Right now, research teams all over the world are competing to turn knowledge into applications. The rapid development of wearable technology has received another boost from a new development using graphene for printed electronic devices.

Having all ideal characteristics, graphene is considered the most promising material in wearable e-textiles. However, there is a significant bottleneck during the translation from laboratory to mass market: there is no good way to manufacture graphene-based e-textiles on an industrial scale.

In a recent publication in the journal ACS Nano, a team of researchers from the University of Manchester announced that they had developed a scalable method to produce graphene-based wearable e-textiles at a rate as fast as 150 meters (almost 500 feet) per minute, a factory-ready efficiency.

According to Nazmul Karim, the first author of the report, their cost-effective and straightforward way of producing multifunctional graphene textiles is a “is a significant breakthrough for the rapidly growing wearables market". The easily scalable method can be utilized in many real-life applications, such as sportswear, military gear, and medical clothing.

Traditionally, the graphene-based textiles are first coated with graphene oxide, and then the graphene oxide is reduced to its functional form of reduced graphene oxide. Instead, the Manchester team has reversed the previous process: they first reduced the graphene oxide in solution and then coated the textiles with the reduced form.

"Our future research plan is to look into other 2D materials and utilize their benefits for wearable e-textiles applications," Karim said. "We are also looking to commercialize these technologies in collaboration with industrial partners."

How flexible is graphene? Credit: University of Manchester

Source: phys.org

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
NOV 06, 2019
Chemistry & Physics
NOV 06, 2019
Radioactive Spill? Self-propelled Microbots to the Rescue
Scientists have been looking for an effective method to clean up radioactive elements in industrial wastewater and accidental spill, to support and boost t...
DEC 12, 2019
Chemistry & Physics
DEC 12, 2019
Self-learning, Light-responsive Robot Inspired by Pavlov's Dog
Russian physiologist Ivan Pavlov famously trained the canines in his experiments to salivate in response to the sound of a metronome, which was a showcase...
DEC 22, 2019
Space & Astronomy
DEC 22, 2019
How Astronomers Measure Distances to Stars
Extra stellar systems are so far away from our own that we couldn’t even hope of developing a tape measure long enough to determine how far away they...
JAN 09, 2020
Chemistry & Physics
JAN 09, 2020
Accelerator on a Chip: Honey, I Shrunk the Particle Accelerator
When we talk about about particle accelerators, the idea of enormous machines with the size of a warehouse and located inside underground tunnels...
JAN 19, 2020
Space & Astronomy
JAN 19, 2020
The Quest to Understand Saturn's Auroras Continues
The Cassini-Huygens mission officially came to an end in September 2017 when it came dangerously close to running of fuel and was consequently ordered to m...
FEB 03, 2020
Space & Astronomy
FEB 03, 2020
How NASA's MAVEN Spacecraft is Studying Mars' Ionosphere
If you ever listen to the radio and experience a phenomenon in which the broadcast sounds garbled or as if another radio station is attempting to play over...
Loading Comments...