JAN 31, 2018 1:00 PM PST

Strong Like Aluminum

WRITTEN BY: Daniel Duan

A sample is readied for analysis using a transmission electron microscope. Credit: Marshall Farthing/ Purdue.

Material engineers from Purdue University announced that they have generated a super-strong aluminum-iron alloy. According to their recent publication in the journal Advanced Materials, the alloy is so strong that it can rival "the strength of stainless steel".

Light and strong metal alloys are the most sought-after crown jewel in the industries such as the automobile, electronics, military, and aerospace. For example, one of the major trends in the automobile industry is the lightening of vehicles. Using materials like carbon fiber, lighter metals and metal alloys that are stronger and lighter than steel, auto manufacturers have built a new generation of vehicles that are substantially lighter and environmentally friendlier than previous ones.

Aluminum alloys are often known for their lightweight but not strength. The Purdue engineers introduced a special structural feature called “9R phase stacking faults” into their alloy enhance its strength. Try picturing this: in the nanoscale, metal atoms are stacked together in a repeating sequence to form a scaffold-like structure, officially known as a crystal lattice. A stacking fault is a type of defect which characterizes the disordering within the planes of the scaffold.  The 9R phase stacking fault is of particular interest to the Purdue engineers: it consists of a repeating unit of nine atomic layers—six fault planes plus three normal planes. 

While stacking faults have been achieved and known improve the strength and ductility of other metals like copper and silver, no one has yet managed to do the same in aluminum. Forming stacking faults within aluminum lattice has proven especially difficult due to its high stacking fault energy. The material researchers introduced the 9R phase in aluminum by introducing iron atoms into aluminum's crystal structure via a procedure called magnetron sputtering.

The resulted aluminum-iron alloy have an extra feature: nanotwinning, which have been the focus of intense research lately. Twin boundaries occur when two metal crystals of the same type intergrow in the nanoscale, which leads to a minimized misorientation between them. Nanotwinned metal crystals have enhanced mechanical strength while maintaining good ductility, electrical conductivity, and thermal stability in metallic materials.

Commenting on one of the strongest aluminum alloys ever created, Xinghang Zhang, a Purdue Engineering professor and the study's senior author said: “Molecular-dynamics simulations, performed by professor Jian Wang’s group at the University of Nebraska, Lincoln, showed the 9R phase and nanograins result in high strength and work-hardening ability and revealed the formation mechanisms of the 9R phase in aluminum,” Zhang said. “Understand new deformation mechanisms will help us design new high strength, ductile metallic materials, such as aluminum alloys.”

Super-strong Aluminum Alloy. Credit: Purdue Engineering

Source: Purdue University

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
SEP 24, 2021
Chemistry & Physics
Protecting the Mango Plant with Signal Interference
SEP 24, 2021
Protecting the Mango Plant with Signal Interference
Researchers made huge steps in mitigating the virulence of a mango plant toxin by exploiting the bacteria and signal pat ...
SEP 28, 2021
Earth & The Environment
How to Save the World's Coral Reefs? Global Reforestation
SEP 28, 2021
How to Save the World's Coral Reefs? Global Reforestation
With recent news of the world's coral supply standing at just 50% of what it was in the 1950s, any strategies for protec ...
OCT 08, 2021
Chemistry & Physics
Gamma-Ray Burst from Distant Galaxy May Have Been Space Junk
OCT 08, 2021
Gamma-Ray Burst from Distant Galaxy May Have Been Space Junk
In 2020, scientists observed something incredible: they had measured a gamma-ray burst from a distant galaxy called GNz1 ...
OCT 09, 2021
Earth & The Environment
New Technique to Refine Rare Earth Metals
OCT 09, 2021
New Technique to Refine Rare Earth Metals
Rare earth elements, though not particularly rare, are difficult to collect and very useful for our 21st-century li ...
OCT 19, 2021
Space & Astronomy
A Glimpse at the Death of Our Solar System
OCT 19, 2021
A Glimpse at the Death of Our Solar System
One of the most difficult aspects of studying space is that most things, on the astronomical scale, happen very slowly. ...
OCT 29, 2021
Chemistry & Physics
Recycled Lithium Batteries: Better than New?
OCT 29, 2021
Recycled Lithium Batteries: Better than New?
One of the most contentious issues in clean energy is the lithium battery. From environmental mining dangers to inhumane ...
Loading Comments...