JAN 31, 2018 1:00 PM PST

Strong Like Aluminum

WRITTEN BY: Daniel Duan

A sample is readied for analysis using a transmission electron microscope. Credit: Marshall Farthing/ Purdue.

Material engineers from Purdue University announced that they have generated a super-strong aluminum-iron alloy. According to their recent publication in the journal Advanced Materials, the alloy is so strong that it can rival "the strength of stainless steel".

Light and strong metal alloys are the most sought-after crown jewel in the industries such as the automobile, electronics, military, and aerospace. For example, one of the major trends in the automobile industry is the lightening of vehicles. Using materials like carbon fiber, lighter metals and metal alloys that are stronger and lighter than steel, auto manufacturers have built a new generation of vehicles that are substantially lighter and environmentally friendlier than previous ones.

Aluminum alloys are often known for their lightweight but not strength. The Purdue engineers introduced a special structural feature called “9R phase stacking faults” into their alloy enhance its strength. Try picturing this: in the nanoscale, metal atoms are stacked together in a repeating sequence to form a scaffold-like structure, officially known as a crystal lattice. A stacking fault is a type of defect which characterizes the disordering within the planes of the scaffold.  The 9R phase stacking fault is of particular interest to the Purdue engineers: it consists of a repeating unit of nine atomic layers—six fault planes plus three normal planes. 

While stacking faults have been achieved and known improve the strength and ductility of other metals like copper and silver, no one has yet managed to do the same in aluminum. Forming stacking faults within aluminum lattice has proven especially difficult due to its high stacking fault energy. The material researchers introduced the 9R phase in aluminum by introducing iron atoms into aluminum's crystal structure via a procedure called magnetron sputtering.

The resulted aluminum-iron alloy have an extra feature: nanotwinning, which have been the focus of intense research lately. Twin boundaries occur when two metal crystals of the same type intergrow in the nanoscale, which leads to a minimized misorientation between them. Nanotwinned metal crystals have enhanced mechanical strength while maintaining good ductility, electrical conductivity, and thermal stability in metallic materials.

Commenting on one of the strongest aluminum alloys ever created, Xinghang Zhang, a Purdue Engineering professor and the study's senior author said: “Molecular-dynamics simulations, performed by professor Jian Wang’s group at the University of Nebraska, Lincoln, showed the 9R phase and nanograins result in high strength and work-hardening ability and revealed the formation mechanisms of the 9R phase in aluminum,” Zhang said. “Understand new deformation mechanisms will help us design new high strength, ductile metallic materials, such as aluminum alloys.”

Super-strong Aluminum Alloy. Credit: Purdue Engineering

Source: Purdue University

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
MAR 17, 2020
Space & Astronomy
MAR 17, 2020
This Supermassive Black Hole Ejected Matter Faster Than 99% the Speed of Light
Almost a year ago, astronomers released the first true image of a black hole. All efforts were focused on a supermassive ...
MAR 23, 2020
Space & Astronomy
MAR 23, 2020
Here's Why the Planets Orbit the Sun How They Do
All the solar system’s planets follow nearly the same plane and direction as they orbit the Sun, and this is somet ...
APR 19, 2020
Chemistry & Physics
APR 19, 2020
This polymer degrades faster in the ocean
New research supported by the National Science Foundation's Center for Sustainable Polymers showcases a novel kind o ...
MAY 14, 2020
Chemistry & Physics
MAY 14, 2020
Do Organic Chemists Speak an Alien Language?
Have you ever read a detergent label and got confused? Or had trouble understanding a medication recall? Certain ch ...
MAY 06, 2020
Chemistry & Physics
MAY 06, 2020
Electronic nose could detect COPD
An electronic nose capable of identifying respiratory tract infections could come in great handy in times like these. At ...
MAY 20, 2020
Chemistry & Physics
MAY 20, 2020
Do cats or dogs better survive venomous snakebites?
Who do you think could better battle off a venomous snakebite - a dog or a cat? New research from the University of Quee ...
Loading Comments...