MAR 21, 2018 09:30 AM PDT

Conductive Coating Opens Door for New Wearable Electronics

MXene coating on nylon fibers. Credit: Hyosung An/Texas A&M U

Flexible electronics are not just visually cool, they also represent a popular trend in technology: consumers want their devices bendable for ease of storage, foldable to save space and wearable like a piece of garment. According to a recent publication on Science Advances, material researchers from Texas A&M University have developed a durable yet conductive coating that could inspire a new generation of flexible electronics.

Let's be honest, making bendable devices is challenging: many of its components need to be made of a material that is both electroconductive and mechanically flexible and durable. Because the device has to withstand a wide array of deformations and is still functional.

Take your cell phone for example, its lithium-ion battery does not like mechanical stress, which might cause explosion. Underneath the rigid OLED glass screen, there is likely an electroluminescent polymer which could be a little bendable. Inside the phone, semiconductors that made with metal-doped silicon do not like mechanical stress at all. The Texas A&M team tackled this problem by developing a new stretchable, bendable and foldable conductive coating.

At the center of their research is a material called MXene, a new two-dimensional sheet only a few atoms thick. Chemically, the nature of compound is inorganic, mainly metal carbides, nitrides, or carbonitrides. Compared to graphene, another highly competitive candidate for wearable electronics, MXene has the combined advantage of conductivity of transition metal carbides and hydrophilicity due to its hydroxyl or oxygen-covered surface. It have shown potentials in multiple industrial applications, such as energy storage, composites, photocatalysis, water purification and gas sensors.

Rather than using MXene as sheets, researchers created MXene coatings through the sequential adsorption of negatively charged MXene sheets and positively charged polyelectrolytes using an aqueous assembly process known as layer-by-layer (LbL) assembly. The multilayer coatings can undergo large-scale mechanical deformation while maintaining a high level of conductivity. The team has also successfully deposited the MXene multilayer coatings onto flexible polymer sheet, stretchable silicones, nylon fiber, glass, and silicon.

A topographic scanner was fabricated using a patterned MXene multilayer–coated PET film. Credit: ScienceVio

Source: Texas A&M University

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
JUN 20, 2018
Chemistry & Physics
JUN 20, 2018
What is Schlieren Imaging
The photographic technique known as Schlieren photography gets its name from the German word "Schliere", meaning "streak". It was...
JUN 21, 2018
Chemistry & Physics
JUN 21, 2018
A New Way to Study Dark Matter-Binary Pulsar "Free Fall"
The pulsar is often compared to lighthouses because it emits beams of electromagnetic radiation that are pointed toward specific directions. A binary pulsa...
JUL 03, 2018
Chemistry & Physics
JUL 03, 2018
The (Plastic) Elephant in The Room
Once considered the crown jewel of industrial evolution, the prevalence of plastics has been slowly becoming one of the biggest environmental disasters asi...
JUL 28, 2018
Chemistry & Physics
JUL 28, 2018
Star Ran Away From Black Hole, Leaving a Part of Its Light Behind
In a recent news conference, scientists from the European Southern Observatory (ESO) announced that their Very Large Telescope (VLT) in Chile witnessed a c...
AUG 22, 2018
Chemistry & Physics
AUG 22, 2018
The Universe is Expanding, But How Fast?
Since the Big Bang, our universe has never ceased expanding. The rate of cosmic expansion, now known as the Hubble Constant, was first defined by Belgian a...
SEP 26, 2018
Chemistry & Physics
SEP 26, 2018
There's Nothing Weak About the Weak Force
The weak nuclear force, or weak force for short, is so named because it is the direct contrast to the strong nuclear force, the attractive force that binds...
Loading Comments...