APR 05, 2018 12:20 PM PDT

First Results from the Neutrino Mountain Experiment

WRITTEN BY: Daniel Duan

Bottom view of the 19 CUORE towers installed in the cryostat. Credit: CUORE

Physicists have long pondered the question: why is our universe made mostly of matter but not antimatter? Theoretically, the Big Bang is supposed to have produced an equal amount of matter and antimatter. Nowadays our world is overwhelmingly filled matters, while antimatters are hard to come by.

Last week in the journal Physical Review Letters, an international team of physicists published their preliminary results from an underground experiment designed to answer this fundamental question of physics. Acronym meaning "heart" in Italian, the Cryogenic Underground Observatory for Rare Events (CUORE) is a joint Italian and U.S. experiment housed in a deep underground laboratory beneath a mountain (hence the nickname "Neutrino Mountain Experiment") in Italy. For the past few months, scientists at CUORE have been looking for an exotic kind of particle decays known as a neutrinoless double beta decay.

Being one of the most plentiful yet elusive fundamental particles out there, the neutrino is a fermion that interacts only via the weak subatomic force and gravity. Its name fully explains its nature: electrically neutral, and almost massless. Because neutrinos typically pass through normal matter, it makes it extremely difficult to be stopped or detected.

For example, to study astrophysical events like exploding stars, gamma-ray bursts, black holes and neutron stars, scientists built the IceCube Neutrino Observatory located at the Amundsen-Scott South Pole Station in Antarctica. Its highly sensitive detecting mechanism is an array of 5,160 basketball-sized optical sensors deeply encased within a cubic kilometer of very clear Antarctic ice.

All particles have their antiparticles, neutrinos is no exception. But because antineutrinos and neutrinos are both neutral particles, scientists have long suspected that they could the same entity. If neutrino can transform between a matter and antimatter version of itself, that might provide a plausible explanation behind the universe's matter-antimatter imbalance. According to physicists, as the heavy neutrinos produced immediately the Big Bang have decayed asymmetrically-meaning producing more matter instead of antimatter, it would make sense for us to live in the world made of predominantly matters.

Within the CUORE facility, scientists have been waiting to detect a neutrinoless double-beta decay on the 988 crystals of tellurium dioxide in the cryostat. When tellurium atoms decay, they give out particles such as electrons and antineutrinos. If the neutrino is indeed its own antiparticle, the antineutrinos should cancel each other out, and this decay process should be "neutrinoless." Therefore, no other particles other than a pair of electrons should be detected.

While they have not yet detected the neutrinoless double-beta decay, the American and Italian researchers set the most stringent limits on the amount of time that such a process should take based on their preliminary recording. If the decay does exist, it would only happen once every ten septillions (1025) years. And they predict that within the next five years they should be able to detect at least five decay events, if their theory is correct. Otherwise, the opposite would be true: the neutrino is not its own antiparticle. 

Commenting their work, Lindley Winslow, a CUORE member and MIT physics professor, said: "It's a very rare process—if observed, it would be the slowest thing that has ever been measured. The big excitement here is that we were able to run 998 crystals together, and now we're on a path to try and see something."

The Science of the Deep Underground Neutrino Experiment (DUNE). Credit: Fermilab

Source: MIT

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
JUL 28, 2020
Chemistry & Physics
Self-healing polymer modeled after squid ring teeth protein
JUL 28, 2020
Self-healing polymer modeled after squid ring teeth protein
Scientists have developed a biodegradable biosynthetic polymer that mimics squid ring teeth proteins in their ability to ...
AUG 06, 2020
Chemistry & Physics
The fluid dynamics of injection-induced earthquakes
AUG 06, 2020
The fluid dynamics of injection-induced earthquakes
While injection-induced earthquakes have become commonplace in oil fields where wastewater is pumped deep into the Earth ...
AUG 19, 2020
Chemistry & Physics
What about a COVID-19 breathalyzer test?
AUG 19, 2020
What about a COVID-19 breathalyzer test?
New research from a collaboration of researchers share the development of a prototype breathalyzer for detecting COVID-1 ...
SEP 08, 2020
Chemistry & Physics
Green supercapacitor charges faster than you can imagine
SEP 08, 2020
Green supercapacitor charges faster than you can imagine
Research published in the journal Energy Storage reports on the development of a supercapacitor that is literally p ...
SEP 18, 2020
Chemistry & Physics
Toward Understanding Anesthesia
SEP 18, 2020
Toward Understanding Anesthesia
General anesthesia refers to the medical procedure anesthesiologists applies to patients, in order to induce paraly ...
OCT 06, 2020
Clinical & Molecular DX
Radioactive Tracer Shines the Floodlights on Inflammation
OCT 06, 2020
Radioactive Tracer Shines the Floodlights on Inflammation
A patient checks into the hospital with difficulty breathing. Is inflammation to blame? How can physicians visualize are ...
Loading Comments...