APR 05, 2018 12:20 PM PDT

First Results from the Neutrino Mountain Experiment

WRITTEN BY: Daniel Duan

Bottom view of the 19 CUORE towers installed in the cryostat. Credit: CUORE

Physicists have long pondered the question: why is our universe made mostly of matter but not antimatter? Theoretically, the Big Bang is supposed to have produced an equal amount of matter and antimatter. Nowadays our world is overwhelmingly filled matters, while antimatters are hard to come by.

Last week in the journal Physical Review Letters, an international team of physicists published their preliminary results from an underground experiment designed to answer this fundamental question of physics. Acronym meaning "heart" in Italian, the Cryogenic Underground Observatory for Rare Events (CUORE) is a joint Italian and U.S. experiment housed in a deep underground laboratory beneath a mountain (hence the nickname "Neutrino Mountain Experiment") in Italy. For the past few months, scientists at CUORE have been looking for an exotic kind of particle decays known as a neutrinoless double beta decay.

Being one of the most plentiful yet elusive fundamental particles out there, the neutrino is a fermion that interacts only via the weak subatomic force and gravity. Its name fully explains its nature: electrically neutral, and almost massless. Because neutrinos typically pass through normal matter, it makes it extremely difficult to be stopped or detected.

For example, to study astrophysical events like exploding stars, gamma-ray bursts, black holes and neutron stars, scientists built the IceCube Neutrino Observatory located at the Amundsen-Scott South Pole Station in Antarctica. Its highly sensitive detecting mechanism is an array of 5,160 basketball-sized optical sensors deeply encased within a cubic kilometer of very clear Antarctic ice.

All particles have their antiparticles, neutrinos is no exception. But because antineutrinos and neutrinos are both neutral particles, scientists have long suspected that they could the same entity. If neutrino can transform between a matter and antimatter version of itself, that might provide a plausible explanation behind the universe's matter-antimatter imbalance. According to physicists, as the heavy neutrinos produced immediately the Big Bang have decayed asymmetrically-meaning producing more matter instead of antimatter, it would make sense for us to live in the world made of predominantly matters.

Within the CUORE facility, scientists have been waiting to detect a neutrinoless double-beta decay on the 988 crystals of tellurium dioxide in the cryostat. When tellurium atoms decay, they give out particles such as electrons and antineutrinos. If the neutrino is indeed its own antiparticle, the antineutrinos should cancel each other out, and this decay process should be "neutrinoless." Therefore, no other particles other than a pair of electrons should be detected.

While they have not yet detected the neutrinoless double-beta decay, the American and Italian researchers set the most stringent limits on the amount of time that such a process should take based on their preliminary recording. If the decay does exist, it would only happen once every ten septillions (1025) years. And they predict that within the next five years they should be able to detect at least five decay events, if their theory is correct. Otherwise, the opposite would be true: the neutrino is not its own antiparticle. 

Commenting their work, Lindley Winslow, a CUORE member and MIT physics professor, said: "It's a very rare process—if observed, it would be the slowest thing that has ever been measured. The big excitement here is that we were able to run 998 crystals together, and now we're on a path to try and see something."

The Science of the Deep Underground Neutrino Experiment (DUNE). Credit: Fermilab

Source: MIT

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
MAY 23, 2021
Space & Astronomy
More Accurate Clocks Create More Disorder in the Universe
MAY 23, 2021
More Accurate Clocks Create More Disorder in the Universe
Physicists at the University of Oxford in the UK have conducted an experiment that suggests the more accurately clocks t ...
JUN 15, 2021
Genetics & Genomics
DNA May Soon Become a Digital Storage Device
JUN 15, 2021
DNA May Soon Become a Digital Storage Device
We live in an age of information and data, and more is being generated every day. It's estimated that there are about te ...
AUG 09, 2021
Space & Astronomy
Moon's Magnetism Comes from Impacting Comets, not Magnetic Shield
AUG 09, 2021
Moon's Magnetism Comes from Impacting Comets, not Magnetic Shield
Magnetization on the moon may come from impact events from objects like meteors instead of the presence of a magnetic sh ...
AUG 19, 2021
Space & Astronomy
Researchers Observe the Birth of New Solar Systems
AUG 19, 2021
Researchers Observe the Birth of New Solar Systems
Astronomers are gaining new insights on how our solar system was born from observations of a nearby star-forming region ...
SEP 06, 2021
Chemistry & Physics
NASA's James Webb Space Telescope is Ready for Space!
SEP 06, 2021
NASA's James Webb Space Telescope is Ready for Space!
With a long set of rigorous tests behind it, the James Webb Space Telescope (JWST), NASA’s next major space telesc ...
SEP 10, 2021
Space & Astronomy
NASA Announces December Launch Date for James Webb Space Telescope
SEP 10, 2021
NASA Announces December Launch Date for James Webb Space Telescope
Recently, NASA confirmed that the gamut of earth-based testing for the James Webb Space Telescope has been completed. Ju ...
Loading Comments...