AUG 16, 2018 8:34 AM PDT

Nanotech patch makes light-up medical tests 100x brighter

Researchers have developed a high-tech fix that uses metal nanostructures to increase the fluorescence intensity by 100 times in diagnostic tests. It’s a cheap and easy solution to a vexing diagnostic problem.

Fluorescence-based biosensing and bioimaging technologies are common in research and clinical settings to detect and image various biological species of interest. While fluorescence-based detection and imaging techniques are convenient to use, they suffer from poor sensitivity.

For example, when a patient carries low levels of antigens in the blood or urine, the fluorescent signal can be feeble, making visualization and diagnosis difficult. For this reason, fluorescence-based detection is not always ideal when sensitivity is a key requirement.

“Using fluorescence for biodetection is very convenient and easy, but the problem is it’s not that sensitive, and that’s why researchers don’t want to rely on it,” says Srikanth Singamaneni, professor of mechanical engineering & material science at the Washington University in St. Louis School of Engineering & Applied Science.

As the team explains in the journal Light: Science and Applications, techniques to boost the signal—such as relying on enzyme-based amplification—require extra steps that prolong the overall operation time, as well as specialized and expensive read-out systems in some cases.

However, the “plasmonic patch” developed by Singamaneni and coworkers doesn’t require any change in testing protocol. The patch is a flexible piece of film about a centimeter square, embedded with nanomaterials. All a researcher or lab tech needs to do is prepare the sample in the usual method, apply the patch over the top, and then scan the sample as usual.

“It’s a thin layer of elastic, transparent material with gold nanorods or other plasmonic nanostructures absorbed on the top,” says Jingyi Luan, a graduate student in the Singamaneni Lab and primary author of the manuscript.

“These nanostructures act as antennae: they concentrate light into a tiny volume around the molecules emitting fluorescence. The fluorescence is dramatic, making it easier to visualize. The patch can be imagined to be a magnifying glass for the light.”

Singamaneni says the newly developed patch is a cheap fix—costing only about a nickel per application—and one that contains not only research applications but also diagnostics. It could be particularly useful in a microarray, which enables simultaneous detection of tens to hundreds of analytes in a single experiment.

“The plasmonic patch will enable the detection of low abundance analytes in combination with conventional detection methodologies, which is the beauty of our approach,” says Rajesh Naik, chief scientist of the 711th Human Performance Wing of the Air Force Research Laboratory at Wright-Patterson Air Force Base.

“It’s a last step, just like a Band-Aid,” Singamaneni says. “You apply it, and the dimness problem in these fluorescence-based detection methods is solved.”

The National Science Foundation, the National Institutes of Health, and the Barnes-Jewish Hospital Research Foundation funded the research. Washington University’s Office of Technology Management also provided funding.

Source: Washington University in St. Louis

 

This article was originally published on Futurity.org

About the Author
MS
Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JUN 16, 2022
Genetics & Genomics
One in 500 Men Carry an Extra Sex Chromosome
JUN 16, 2022
One in 500 Men Carry an Extra Sex Chromosome
Humans carry 46 chromosomes. We get one from each parent, making 22 pairs of autosomal chromosomes, and one pair of sex ...
JUN 20, 2022
Cancer
Uterine Cancer Mortality is on the Rise
JUN 20, 2022
Uterine Cancer Mortality is on the Rise
Uterine cancer develops when cells in the inner lining of the uterus, known as the endometrium, undergo uncontrolled and ...
JUL 02, 2022
Health & Medicine
How Healthy Is Your Diet?
JUL 02, 2022
How Healthy Is Your Diet?
Is your diet as healthy as you think it is? Probably not - I know mine isn't. Recent research has revealed that ...
JUL 01, 2022
Neuroscience
Why Do 1 in 15 Physicians Experience Suicidal Ideation?
JUL 01, 2022
Why Do 1 in 15 Physicians Experience Suicidal Ideation?
Researchers have uncovered six overarching themes that contribute to physician suicide. The corresponding study was publ ...
AUG 03, 2022
Cardiology
Cardiovascular diseases could see sharp increase in US by 2060
AUG 03, 2022
Cardiovascular diseases could see sharp increase in US by 2060
In a recent study published in the Journal of the American College of Cardiology, a collaborative research team from the ...
AUG 16, 2022
Neuroscience
A Common Denominator Among All Forms of ALS is Revealed
AUG 16, 2022
A Common Denominator Among All Forms of ALS is Revealed
ALS (amyotrophic lateral sclerosis) is a motor neuron disease, which gradually causes a loss of movement. Eventually, pa ...
Loading Comments...