DEC 11, 2019 9:36 AM PST

New 3-in-1 organ in a dish set to elevate research and diagnostics

WRITTEN BY: Tara Fernandez

In trying to understand complex phenomena in the human body, researchers usually have to turn to oversimplified biological models. Amongst the easiest to use research tools are single layers of human cells, grown in a cocktail of chemicals made to mimic the cells’ natural environment. 

In a living organism, however, cells do not exist in isolation but instead, are linked by intricate networks of tissue and organ systems. From a technical standpoint, these structures are incredibly challenging to reproduce in a laboratory setting.

In a world first, researchers based at the Cincinnati Children's Hospital Medical Center (CCHMC) have developed a method for turning stem cells into 3-dimensional models of not one, but three interconnected organs: the liver, bile duct, and pancreas.

The research, led by Assistant Professor at the Department of Pediatrics, Takanori Takebe, was published in the journal, Nature.

These miniature versions of organs, known as organoids, are a breakthrough for researchers. For one, they enable them to study how the liver and surrounding organs form during embryonic development. Moreover, they pave the way for next-generation diagnostic platforms and, in the future, even on-demand lab-grown organs for transplantation.

The method as described by Takebe’s team involves harvesting adult skin cells, reverting them to a stem cell-like state and then growing groups of cells in spheroids. These clumps of cells are akin to embryonic tissues in the first month of gestation. 

When placed in a specially concocted gel medium at a precise time point of their growth, contact between the spheres triggers a flurry of molecular cascades. These orchestrate the formation of the distinctive liver, bile duct, and pancreatic tissues, as illustrated in the video.

 

 

Despite being tiny, relatively simplified versions of the actual organs, the organoids were found to be remarkably functional for something created under laboratory conditions -- with the pancreas even secreting digestive enzymes through its miniature ducts.

For Takebe, this accomplishment is the result of many years of hard work and dedication. Having graduated from medical school in 2011, Takebe was one of the youngest recorded professors in Japan at the age of just 26. His previous work centered around creating organoids representing both the early stages of fetal liver development and inflammatory liver disease.

Discover Magazine ranked Takebe’s early findings Number 5 in their list of the top 100 scientific innovations of 2013.

Speaking on the impact of his most recent work with organoids, Takebe explains, "The work here shows that it is possible to create such a system using human pluripotent stem cells. This is quite exciting, as it lends credibility to the idea that stem cells might be used to make personalized models to study how organs form and how genetic mutations lead to organ malfunction."

 

Sources: EurekAlert!, Cincinnati Children's Hospital Medical Center.

 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
SEP 20, 2019
Neuroscience
SEP 20, 2019
The brain of a psychopath: how people with psychopathic traits control their 'dark urges'
Psychopaths are usually portrayed negatively: they display antisocial behavior, such as shallow emotions, callousness, impulsivity, and lack of empathy. Ps...
OCT 07, 2019
Genetics & Genomics
OCT 07, 2019
Risk Factors for Gout Revealed by Genome-Wide Association Study
Gout is a common type of arthritis, and causes severe and sudden pain, redness and swelling in the joints....
NOV 10, 2019
Microbiology
NOV 10, 2019
A New Strain of HIV is Identified
For the first time since 2000, researchers have identified a new subtype of HIV....
DEC 04, 2019
Clinical & Molecular DX
DEC 04, 2019
Genetic platform takes the guesswork out of catching infections
A physician is faced with 3 patients: an elderly person with a chronic cough, a child being wheeled out of surgery and a young mother with a high fever. Ho...
JAN 06, 2020
Genetics & Genomics
JAN 06, 2020
Some Genetic Sequencing Tests Are Coming Up Short
If it's suspected that a person has a genetic disease, doctors might send the patient's DNA for sequencing. But some sequencing tests may not be checking thoroughly....
APR 04, 2020
Clinical & Molecular DX
APR 04, 2020
AI Finds New Predictive Markers of Covid-19 Severity
Researchers and healthcare organizations are putting their heads together to consider how technology could ease the ever-worsening COVID-19 global crisis....
Loading Comments...